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Abstract—Cloud computing provides a variety of distinct
computing resources on demand. Supporting live migration in
the cloud can be beneficial to dynamically build a reliable and
cost-optimal environment, especially when using spot instances.
Users can apply the process of live migration technology using
the Checkpoint/Restore In Userspace (CRIU) to achieve the goal.
Due to the nature of live migration, ensuring the compatibility
of the central processing unit (CPU) features between the source
and target hosts is crucial for flawsless execution after migration.
To detect migratable instances precisely while lowering false-
negative detection on the cloud-scale, we propose a workload-
aware migratable instance detector. Unlike the implementation
of the CRIU compatibility checking algorithm, which audits
the source and target host CPU features, the proposed system
thoroughly investigates instructions used in a migrating process to
consider CPU features that are actually in use. With a thorough
evaluation under various workloads, we demonstrate that the
proposed system improves the recall of migratable instance
detection over 5× compared to the default CRIU implementation
with 100% detection accuracy. To demonstrate its practicability,
we apply it to the spot-instance environment, revealing that it can
improve the median cost savings by 16% and the interruption
ratio by 15% for quarter cases.

Index Terms—Migration, ISA, Cloud, Debugging

I. INTRODUCTION

The evolution of cloud computing changes the way com-
puting resources are used in various fields. Notable cloud
computing characteristics that lead to broad adoption are
elastic resource usage, on-demand billing, and a variety of
instance types that users can choose. With various instance
types, applying the live migration of applications can sig-
nificantly enhance efficiency as the resource requirements
of the application change. Live migration of applications in
the process or container layer can be performed without the
support of cloud service providers using a process migration
system, such as CRIU [1].

When migrating applications between various instance types
with distinct CPU features, flawless operation after migration
is crucial. One of the safest ways to achieve the goal is to
select a migration target instance that supports all features
supported by a migration source instance, and it can be ensured
by checking the advertised CPU features of host machines. The
current implementation of the CRIU compatibility checking
module adopts this approach and compares the CPU features
of the source and target instance before starting a migration.

However, a workload generally does not use all CPU features
supported in the source instance, and considering the unused
features in the migratable instance detection can negatively
affect the number of feasible target instances for migration,
which we referred to as false-negative migratable instance
detection that results in low recall.

To overcome these limitations, we propose a workload-
aware migratable instance detection algorithm. Unlike the
simple detection algorithm adopted by CRIU, the proposed
system first extracts instructions that are highly likely to be
executed. The extracted instructions are transformed into CPU
features to generate a workload-to-CPU feature map. The map
is then matched to the CPU feature maps extracted from
various cloud instance types to identify migratable instance
types. In the proposed system, precise workload instructions
analysis is crucial, and we propose two heuristics, text-segment
full scan and execution path tracking, which have trade-offs
between recall, operation overhead, and the completeness of
the feature extraction.

To demonstrate efficiency using the proposed system, we
collected the CPU features of 450 unique instance types pro-
vided by Amazon Web Services (AWS). We chose seven real-
world workloads that use different CPU features. The results
of the experiment reveal that the proposed algorithm can
identify a migratable instance with 100% precision. Compared
to the CRIU detection algorithm, the proposed method has
a 5× higher recall value, which greatly enlarges the target
node pool for migration. The effectiveness of the proposed
system is further demonstrated by adopting it in a spot-
instance environment in the cloud by demonstrating that the
proposed system improves the median cost savings by 16%
with improved reliability.

The major contributions of this paper are as follows.

• Proposing heuristics to extract instructions of workload
and matching them to corresponding CPU features

• Conducting thorough analysis of various issues when
analyzing and matching instructions to CPU features

• Implementing the system to demonstrate the effective-
ness. To the authors’ best knowledge, this is the first work
to enhance the migratable instance detection in the cloud-
scale.
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Fig. 1: Components of the proposed system to find a set of cloud instances to which can migrate

II. RUNTIME MIGRATION ON PUBLIC CLOUD

Runtime migration allows one to change an application
hosting machine to another host. Live migration, also known
as hot migration, keeps a migration target running while
preserving volatile memory content and other system statuses,
such as open file descriptors, sockets, and files. Migration can
be applied to achieve various goals, such as load balancing of
many computing resources and continuous operations even in a
disaster [2]. Migration can occur between virtual machines [3],
containers [4], [5], or processes [1], [6]. In a public cloud
computing service, virtual machine migration is not publicly
supported due to its implementation complexity. It is intended
to be used internally by a service vendor to provide continuous
service during machine maintenance. Instead, users can initiate
migration in the context of a container or process that runs on
top of a virtualized instance.

A. Live Migration Process

The CRIU [1] is widely used to migrate a process or
container while keeping an application running without losing
volatile memory content. The CRIU migratable objects include
virtual memory mappings, memory and register content, file
descriptors, sockets, pstrees, and many others. The sequence
of CRIU is divided into checkpoint and restore operations.

The checkpoint step freezes the target process for migratin
using a cgroup freezer feature to avoid changes while dumping
the process content. It recursively scans the /proc/$pid/ direc-
tory to extract process resources. Then, using a ptrace system
call, it injects a parasite code that allows the CRIU routine to
be executed in the target process to dump the memory content.
The checkpoint object is stored using a protobuf [7] format that
can be restored later.

In the restore step, CRIU analyzes the checkpointed file
to understand which resources are shared by the migrated
process. During this process, shared resources are identified,
such as file handles, network connections, and shared mem-
ory areas. To create the necessary new address space for
restoration, CRIU invokes the fork function multiple times to
prepare a process tree for the restoration. This prepared process
tree replicates the original process state based on memory
mappings, file descriptors, socket states, and other information
stored in the checkpoint file.

B. Ensuring Compatibility Based on CPU Features

The target machine must support all CPU features used by
the migrating process to ensure compatibility during migration.
Suppose a restored process attempts to execute an instruction
that the migration target host CPU cannot interpret. In that
case, the CPU generates a invalid opcode error, lead-
ing to the abnormal termination of the process. The most intu-
itive method to ensure compatibility is to choose a migration
target instance that supports all CPU features supported by a
source instance. The current CRIU implementation adopts this
approach. Although it provides a simple implementation, it can
result in many false-negative migratable instance detections,
which lowers the number of migratable instances, because
most applications do not use all the features provided by a
source host CPU.

1) CPU Dispatching: The CPU dispatching technique de-
termines which version of the source code to execute based
on the CPU features of the underlying hardware to make the
application source code compatible with multiple hardware
types. As an implementation of CPU dispatching, function
multiversioning [8], [9] allows developers to implement mul-
tiple versions of a single function, each optimized for different
CPU features. A compiler produces multiple versions of the
implementation. In the runtime, the GNU indirect function
(IFunc) resolver calls cpu indicator init and inspects CPU
features.

One caveat when using function multiversioning is that it
dispatches a function only at the start of a process. Although
this approach minimizes the overhead of dispatching every
time a function is executed, it can cause problems during
migration. If a process is dispatched to a specific CPU feature
and migrated to a host machine that does not support the
feature, it can potentially cause a problem.

C. Live Migration for Cloud Spot Instances

Public cloud service providers are equipped with abundant
computing resources to meet the dynamic demand for them.
Such abundant resources inherently result in a surplus when
demand is low, and many public cloud vendors provide the
remaining computing resources at a lower price, which is
generally referred to as a spot instance. In response to the
discounted price, a spot instance can be terminated whenever



computing resource demand increases, and spot-instance users
should be prepared for a sudden node interruption.

In the literature, considerable research work has been con-
ducted to deal with spot-instance interruptions by setting a
proper spot-instance bidding price [10], [11], using the check-
pointing feature inherent to a specific application to restart
from a checkpoint status when an interruption occurs [12],
[13], or a mixture of spot and on-demand instances to achieve
cost efficiency and reliability [14], [15].

To the best of the authors’ knowledge, no research has
attempted to apply the live migration process on an interrupted
spot instance. However, it could be a viable approach to deal
with an interruption event, even for applications that do not na-
tively support checkpointing. The cost savings and availability
of a spot instance vary significantly for various instance types
globally [16]. Among many possible candidates for migration,
it is crucial to guarantee the compatibility between the source
and target instance types. The live migration compatibility
checking heuristic proposed in this paper facilitates ensuring
flawless recovery from spot-instance interruption while im-
proving cost savings and reliability after migration.

III. WORKLOAD-AWARE MIGRATABLE INSTANCE
DETECTOR

Compatibility checking for a process live migration based
on CPU features, as the current implementation of CRIU
does, might unnecessarily filter out feasible target instances
even when missing CPU features in a target are not used
in a workload. To avoid such a false-negative migration
feasibility detection and widen the migration candidate node
pool in the cloud, we propose a workload-aware migratable
instance detector. Figure 1 illustrates the components of the
proposed system. The CPU feature collector (Section III-A)
is responsible for gathering CPU features of various cloud
instances. The workload instruction analyzer (Section III-B)
investigates the process for migration to detect core operations
in which compatibility should be guaranteed on a new host.
The compatibility checker (Section III-C) determines whether
a process can be migratable to a specific instance type.

A. CPU Feature Collector

Various instance types, even a few hundred with unique
CPU features, are offered by public cloud service providers.
The CPU feature collector module gathers CPU features of
unique instance types off-line to make a prompt decision about
migratable instance types. In systems with X86 architecture,
CPU features can be extracted using the CPUID instruc-
tion [17], whereas specific system registers are referenced for
this purpose in ARM systems. This paper primarily focuses
on the feasibility of real-time migration between x86 (x64)
Instruction Set Architecture (ISA) systems, as most current
cloud instances fall into this category. The CPUID in X86
provides detailed information about the CPU model, fam-
ily, and supported instruction sets, depending on the given
CPUID leaf (EAX) and subleaf (ECX) arguments. The CPU
feature collector executes the CPUID instruction using the

CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 1.

leaf(EAX) 
= 07H

subleaf(ECX) 
= 0H

return(EBX) 
check bit 18

1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1
32bit RDSEED is availiable

unsigned int EAX, EBX, ECX, EDX;
_get_cpuid_count(leaf, subleaf, &EAX, &EBX, &ECX, &EDX);
// Check the 18th bit of EBX

Fig. 2: Using CPUID to check whether a CPU feature is
supported by a host machine

get cpuid count method provided in the GNU C Library
(glibc). The acquired CPU information is stored in various
registers (EAX, EBX, ECX, and EDX), containing data based
on the values set for the leaf and subleaf. Figure 2 depicts
an example of checking whether a host machine supports
the read random seed (RDSEED) CPU feature. According
to the X86 architecture manual, the feature is defined as
CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 1.
When calling get cpuid count, one must set the leaf (EAX)
to seven and the subleaf (ECX) to zero. The feature support
is determined by checking whether the 18th bit of the EBX
register is set to one.

B. Workload Instruction Analyzer

The proposed system analyzes the operations of a workload
with respect to the CPU features that the workload needs
in a new host. To extract the CPU features, we propose
two methods: the text-segment full scan and execution path
tracking. These methods analyze the text section of the process
memory, which contains all instructions and function calls
from an executable binary file and the shared libraries that
might be executed during the program runtime. For the ex-
tracted operations, the system applies the Intel X86 Encoder
Decoder (XED), which can encode and decode details of X86
instructions, to identify the mapping of an instruction to a CPU
feature.

1) Text Segment Full Scan: The text-segment full scan
decodes all CPU instructions loaded into the process memory
using XED to extract the corresponding CPU features. Using
the GNU debugger (GDB) and Capstone disassembler, we
implement it to analyze the set of CPU instructions in the pro-
cess memory. GDB monitors the internal activities of running
programs and collects addresses of the text segment, whereas
the Capstone disassembler is responsible for disassembling
these addresses.

The algorithm 1 illustrates the operation sequence of the
text-segment full scan. First, a migration target process is
loaded into GDB, and the start and end addresses of each
text section are collected (Lines 1-2). All operations in the
text section are disassembled using the Capstone disassembler,
and the operations in the text segment are collected (Lines 3-



Algorithm 1: The sequence of text segment full scan
Result: A set of CPU features for an input workload

1 Inputs: P : Process
2 for text section addr as T in P do
3 for start addr, end addr in T do
4 instructions ← disas(start addr, end addr)
5 end
6 instructions ← instructions.deduplicate()
7 for instruction as I in instructions do
8 CPU feature ← xed decode(I)
9 workload cpu features.append(CPU feature)

10 end
11 end
12 workload cpu features.deduplicate() return

workload cpu features

5). Line 6 deduplicates the operations, and the deduplicated
disassembled instructions are decoded to the corresponding
CPU features using XED. The identified CPU features are
stored (Lines 7-10), and after scanning all text segments,
duplicated CPU features are removed, returning the result
(Lines 12-13).

The text-segment full-scan approach scans the entire text
segment and can incur significant overhead for disassembling
and CPU feature decoding. It also checks all CPU features that
can be referenced from a workload that is not executed due
to CPU dispatching. For example, the function strlen in
GLIBC is implemented in several optimized versions, such as
AVX2 and AVX512. The full-scan approach does not consider
these details. It tracks all versions of strlen implementation
in the text segment that may result in false-negative detection
for a migratable instance, but it can track all the possible
instructions a process might execute.

2) Execution Path Tracking: To avoid unnecessary scanning
of the entire text segment, we propose an execution-path-
tracking heuristic to extract CPU features actually used by the
process in a best-effort manner. The proposed method tracks
every possible execution path from the entry point to achieve
this goal. The method follows call and jmp related operations
to track the code execution path. A function can be called in
three ways: a direct call, a call through the Procedure Linkage
Table (PLT), and a PLT bypass. We describe how various
calling mechanisms are tracked.

Direct Call: This method is predominantly used in static
linking, where all functions and libraries are included in the
executable file at compile time. In the direct call method, a
compiler knows the memory address of the function before-
hand and it can call the function through its absolute address.
This method allows for fast function execution because it
does not require additional address resolution at runtime. Even
in a dynamic linking environment, the user-written code or
functions defined within the program are directly included in
the executable, and the direct call method is used. Figure 3
shows a sample code, its corresponding GDB output, and the

1		//	main.c
2	 #include "module.h”
3
4 int add(int a,	int b)	{ return a	+ b; }
5
6		int main()	{
7 //	Direct	call
8 int result1 = add(3,	4);
9 //	Call	sub	in	module	through	PLT

10 int result2 = sub(3,	4);
11
12 return 0;	
13		}

1		//	got-example.c
2		//	gcc	got-example.c	–o	got-example	–fno-plt
3		#include "module.h”
4
5		int main()	{
6						//	Call	sub	in	module	Bypass	PLT
7	 int result = sub(3,	4);
8						return 0;	
9		}

1		//	module.c
2		#include "module.h"
3
4		int sub(int a,	int b)	{	return a	- b;	}

Through PLT:  call 0x1 # sub@plt

PLT in module

GOT

..

GOT.PLT in module

init after resolve

Bypass PLT: call 0x1010 # got

Direct call: call 0xA # add

Text Segment

0x1010 0xA # add

other functions...

0x20 0x2 
# sub@plt

Text Segment in module

0xAA endbr64 
# sub start addr
0xAE push rbp

0xAF …

0xA endbr64 
# add start addr
0xE push rbp

0xF …
..

call_dl_runtime_resolve
# search sub

..
update sub@got.plt

0x1 jmp 0x20 # sub@got.plt

0x2 push reloc_offset

..

0xAA
# sub

Fig. 3: Different methods of calling functions of direct call,
through PLT, and bypass PLT

memory layout. The add method in main.c of line number
4 is called in the main function line 8, using a direct call
method. In the GDB output, the function is called referencing
the absolute address of add function.

Call through PLT: This method is employed in dynamic
linking where external library functions are not directly in-
cluded in the executable but are loaded into memory by
the operating system at runtime. Consequently, the compiler
does not know the exact memory address of the function and
compiles the function to be called referencing the PLT. The
PLT is a section within an executable file, designed to mediate



calls to external functions and libraries. The PLT is engineered
to reference the GOT.PLT section in order to facilitate function
calls, where the GOT.PLT is part of the Global Offset Table
(GOT) [18], [19]. The GOT primarily serves as a table
for storing addresses of global variables and functions from
dynamically linked libraries, and the GOT.PLT specifically
manages addresses of functions. Initially, the GOT.PLT points
to a routine to locate the address of library functions, and this
routine is activated when a specific function is called for the
first time. During the initial call to a specific function, the
PLT routine calculates the actual address of the function and
updates the GOT.PLT. Subsequent calls to the function do not
require a lookup of the symbol, as they can directly reference
the GOT.PLT for the function call, allowing the dynamic linker
to find and link the function address at runtime [20].

The method Through PLT in Figure 3 illustrates the initial
call to a function via the PLT. The function sub defined in
module.c is called in the main function of main.c in line
10, where the sub function is assumed to be loaded from an
external library by dynamic linking.

Initially, the address of the sub function is sought by calling
the address of sub@plt (0x1). The sub@plt references the
GOT.PLT, a table updated at runtime and accessible by the
PLT, to perform a jmp to the address of the target function.
GOT.PLT is initially not updated with the address of the sub
function. Therefore, the address of sub must be found and
updated in GOT.PLT. Initially, GOT.PLT points to the next
item of sub@plt (0x2), following the execution flow, it locates
the address of the function to call from the library. At this step,
dl runtime resolve is called, locating the address of sub and

recording it in GOT.PLT. Subsequent calls to the function can
directly reference sub@GOT.PLT, eliminating the necessity to
locate the address again.

This method enables library sharing, allowing multiple pro-
grams to share the same library code, offering the advantage
of memory savings. However, this can incur address-resolution
overhead. In summary, functions embedded in the binary are
called through their absolute addresses determined at compile
time (Direct Call), whereas functions from external libraries
are called at runtime through addresses found in the PLT.

PLT Bypass: Some compilers provide techniques to bypass
the PLT, accessing the GOT directly during function calls
to optimize performance. This approach uses the addresses
already updated in GOT at runtime initialization, reducing
the overhead of additional jumps and lookups during function
calls. Figure 3 shows an example of PLT bypass. In the got-
example.c source code, which is the third code snippet, it
utilizes the GCC -fno-plt compile option to bypass the PLT
when calling the sub function. By using the option, it directly
points to the real function address located in GOT.

In the current implementation of the execution-path-tracking
module, it supports all the above-mentioned function-calling
mechanisms.

Algorithm 2 explains the procedure of execution path track-
ing. On lines 1 to 3, a process is loaded into GDB. After
loading, the starting address of the primary function is set as

Algorithm 2: Execution Path Tracking
Result: CPU features from workload

1 Inputs: P : Process
2 main addr ← get main addr()
3 tracking list.append(main addr)
4 for func start addr as A in tracking list do
5 instructions ← disas func(A)
6 for instruction as I in instructions do
7 if I == branch instruction then
8 if is trackable (I) then
9 tracking list.append(get func addr())

10 end
11 end
12 workload cpu features.append(xed decode(I))
13 end
14 workload cpu features.deduplicate()
15 end
16 return workload cpu features

the starting point and added to the tracking list. In line 5,
functions within the tracking list are disassembled, and the
results are parsed into individual instructions. Lines 6 and
7 check whether an instruction is a branch instruction. In
the current implementation, the algorithm tracks 24 branch
instructions for the call or jmp related ones. On lines 8 to 10,
if the destination address of a branch instruction is trackable,
it is added to the trackable list. To decide whether a function
is trackable, we use disassembly output metadata provided by
GDB. If GDB can find a symbol for a branch target function,
it includes the metadata of the function as comments, such as
the function’s name and address. The direct call mechanism is
trackable using GDB output by simply following the address
field value, which points the text segment address. When a
call is made by referencing the PLT, the target function can
be located within the GOT.PLT, and it is marked as trackable.
Similarly, if a call is facilitated through the GOT bypassing
PLT, the target function can also be identified within the GOT.
The differentiation between these calling methods relies on the
annotations provided by GDB. Beyond these instances, any
calls are considered untraceable. This encompasses scenarios
where symbols have been eliminated due to optimization or
security reasons, cases where the symbols have yet to be
loaded, or a function address is referenced from a register
value, which is implemented as calling by function pointer.

Line 12 decodes all disassembled instructions using XED
to collect the corresponding CPU features of each instruction.
Specifically, the bytecode of each instruction is passed to XED.
Based on the opcode, operands, prefixes, and other elements
that can be extracted from the bytecode, XED determines
which CPU feature a given instruction belongs to. After all
possible paths are tracked, on lines 14 to 16, the duplicated
CPU features are removed, and the final set of features is
returned. The execution path tracking process follows the
sequence of function calls; thus, it excludes all functions that



are not executed, although they are present in memory.
The CPU dispatching of function multiversioning happens

once in the program startup, and only the dispatched imple-
mentation is tracked during execution path tracking, implying
that an implementation dispatched in a migrating source in-
stance remains intact in the target instance after a migration.
Thus, an incompatibility problem can be detected using the
proposed method. However, suppose that a user implements
a custom CPU dispatching module using a conditional state-
ment. In that case, all implementations can be tracked, and it
can still result in a false-negative migratable instance detection.

In summary, the proposed execution path tracking heuristic
focuses solely on tracking branches within the flow of exe-
cuted function calls, thereby extracting CPU features used in
functions that are actually called, while excluding functions
not executed in the code path. Compared to the text-segment
full-scan method, the scope of the code subject to tracking
is significantly reduced and prevents unnecessary analysis of
irrelevant codes.

C. Compatibility Checker

The compatibility checker module determines the compat-
ibility of the source and destination hosts based on the CPU
features of a process extracted from the workload instruction
analyzer and the CPU feature collector. Compatibility check-
ing is conducted by comparing whether the CPU features used
in the migrating workload on the source hosts are present
on the destination host. Although this evaluation method is
similar to the default CRIU implementation, it focuses on
the CPU features that a target workload uses. Thus, it is
expected to lower the chance of false-negative migratable
instance detection.

IV. ISSUES DURING DEVELOPMENT

When analyzing the CPU features used by a process,
multiple issues arise as the CPU hardware evolves, and we
summarize the issues and how we handle them.

A. Handling TSX Issue

Transactional synchronization extensions (TSX) [21], [22]
are designed to optimize parallel processing in multicore pro-
cessors. Support for TSX is identified using the CPU features
of restricted transactional memory (RTM) and hardware lock
elision (HLE). However, the TSX method has been identified
to be vulnerable to side-channel attacks, raising significant
security concerns [23], [24], particularly with regard to the po-
tential leakage of sensitive information by observing memory
access patterns using TSX. Therefore, the TSX feature may
have been disabled in most CPUs. In such cases, the RTM and
HLE features are reported as zero through CPUID, and the
core TSX commands, such as xbegin and xend, which open
and close a transactional memory region, are not available.
However, we discovered that the xtest command, which checks
whether the code is executed in a transactional region, may
still function on CPUs where TSX is disabled, which can cause
false-negative detection for a workload that uses only the xtest

command in a migration target instance without the RTM and
HLE features.

The CPU feature collector module additionally checks
whether a host machine can execute the xtest command regard-
less of TSX support to address this problem. The compatibility
checker module checks whether a workload requires both the
RTM and the HLE features or requires the ability to execute
the xtest command using the additional feature.

B. Limitations of Execution Path Tracking

The execution-path-tracking module cannot track a function
called with a pointer. For example, if a function is called using
the call eax instruction. General-purpose registers such as
EAX and EBX undergo continuous value changes during the
execution of the process. Consequently, to accurately track
calls made through registers, it is imperative to read the register
values at the exact moment these calls occur. This requirement
entails continuous monitoring throughout the entire life cycle
of a process, leading to significant overhead. Therefore, the
proposed system acknowledges the limitations in tracking calls
made via register references, and the impact of this limitation
is thoroughly addressed in the evaluation section.

Lazy loading allows a process to load a specific library
when required, even after a program is started [25], [26]. Using
the dlopen() method, one can quickly implement the feature.
This approach is effective in reducing the initial load times
and optimizing memory usage, particularly by facilitating the
efficient use of system resources in large-scale or resource-
intensive applications. However, when a library has not been
loaded, its symbols do not exist, making it impossible for
the execution-path-tracking module to trace symbols from an
unloaded library.

C. Constraints in Binding Methods

Lazy binding is a technique used for performance optimiza-
tion, in which the function address is not resolved until the
function is called. In other words, in dynamic linking, the
PLT does not point to the actual function address until the
first call to the function occurs. This method reduces initial
loading time and optimizes memory usage during execution,
making it particularly beneficial for complex programs that use
large libraries. The execution-path-tracking module operates
by identifying the function addresses. If the address of the
function to be called is not resolved at the time of tracking, it
is not included in the tracking list.

Unlike lazy binding, the now binding approach resolves
the addresses of all external symbols at the beginning. With
now binding, execution path tracking can trace all function
addresses even at the beginning of program execution, en-
abling tracking at any point during the process runtime. Due
to the limited function address identification of lazy binding,
the current system supports the now binding approach.

V. EVALUATION

This section evaluates the proposed migration compatibility
checker modules from the perspective of precision and recall



of the compatibility decision with an analysis of the overhead
to run the system for various workloads. With the evaluation,
we aim to answer the following questions.

1) RQ-1: Do the proposed text-segment full scan and
execution-path-tracking modules provide better perfor-
mance than the traditional CPU compatibility checking
method provided by CRIU?

2) RQ-2 : Is the overall overhead to perform instruction
analysis in the proposed modules tolerable to be applied
practically for a real application?

3) RQ-3 : When the proposed compatibility check module
is applied in a real cloud environment, how much
monetary benefits are expected, especially when using
volatile spot instances?

A. Environment Setup

We collected the CPU feature maps of 450 unique AWS
EC2 X86 instance types using the proposed CPU feature
collector module. Verification of directional migration com-
patibility for all pair combinations of n instance types requires
n×(n−1)

2 experiments, which is over 100,000 for 450 instance
types, which can be prohibitive in time and cost. To minimize
the overhead, we grouped instance types according to CPU
features, resulting in 27 unique groups. Within each group,
we performed all-to-all migration compatibility experiments
to ensure that there were no problems in the migration in the
same group. For inter-group migration, we chose one instance
type in each group, preferring a lower price, and migrations
were conducted between the selected instance types, result-
ing in 702 (27×26) directional, unique migrations for each
workload.

To check the migration compatibility using a realistic work-
load, we used three general workloads and four synthetically
generated workloads to employ specific CPU features. Com-
monly used workloads includes matrix multiplication using
OpenBLAS [27] which is a core kernel of various deep
neural network and machine learning algorithms. We used
the an in-memory key-value storage Redis while continuously
performing read and write operations. As the training workload
for a machine learning model, we used extreme gradient
boosting (XGBoost) [28] to train a classification model using
a gradient boosting algorithm with the MNIST dataset. The
XGBoost workload is implemented in the CPP, whereas the
other workloads were written in the C language. Special-
purpose workloads include OpenSSL-based Rivest, Shamir,
Adleman (RSA) encryption and decryption using the Multi-
Precision Add-Carry Instruction Extensions (ADX) feature
optimized for large integer operations. Another workload is
a memory protection example using the protection keys for
user-mode pages (PKU) key-based memory protection fea-
ture [29], [30], a random number generation example using
the RDSEED feature, and an OpenSSL-based hashing example
using the secure hash algorithm (SHA) feature. The special-
purpose workloads are marked as adx, pku, rdseed, and sha,
respectively.
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Fig. 4: Comparison of CRIU, text segment full scan, and
execution path tracking precision and recall

B. Precision and Recall

We first aimed to answer RQ-1 regarding migration com-
patibility detection performance. In the evaluation, we used
precision and recall as performance metrics. The precision
measures the accuracy of detection. It measures among the
predicted migratable instance pairs, how many pairs are truly
migratable. The recall measures how many migratable pairs
are detected out of the actually migratable instance pairs.
Precision focuses on the evaluation of true-positive and false-
positive predictions, and the recall focuses on the evaluation
of true-positive and false-negative detections. Lower precision
implies migration failure due to crashing, and a lower recall
implies missing many feasible instance types as migration
targets.

Figure 4 compares the recall and precision of various
migratable instance detection algorithms. In the figure, the
horizontal axis indicates various workloads. The primary
vertical axis displays the recall, and the secondary vertical
axis presents the precision value. The recall value of various
detection algorithms is presented using bars marked with
distinct cross-line, upper-right diagonal, and upper-left diag-
onal patterns that mark CRIU, text-segment full scan, and
execution path tracking, respectively. For the 4,194 migration
experiments, all three detection algorithms have a precision
score of 1.0, which is marked with circle markers; thus, there
was no migration failure if a detection algorithm predicted
migration success.

Recall indicates quite different values for distinct algo-
rithms. The default CRIU implementation has the lowest
recall value, followed by the text-segment full scan. Execution
path tracking has the best recall value. The CRIU detection
algorithm does not consider the workload characteristics, and
many possible migration target hosts were excluded. The text-
segment full-scan method reflects the workload characteristics,
and its recall is better than the default CRIU. However, it
still filters out many possible instance types from the fea-
sible list. Finally, the execution-path-tracking module could
precisely detect all feasible migration target instances for
most workloads. It could not achieve the recall of 1.0 for
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Fig. 5: Comparing the number of CPU features considered
during migratable instance detection

Workload Traceable Untraceable Ratio
matmul 10,899 184 0.017

redis 32,547 372 0.011
xgboost 18,521 300 0.016

adx 11,765 184 0.016
pku 10,851 172 0.016

rdseed 10,262 169 0.016
sha 10,274 168 0.016

TABLE I: The number of traceable and non-traceable func-
tion call instructions when using the execution path tracking
module

the RSA and RDSEED workloads. For both these workloads,
we observed that they are considered to use the CPU feature
of ADOX ADCX. However, the workloads could be executed
on some instance types without the feature. We could not
generalize the executable and inexecutable cases with respect
to the feature, and we leave the case as a missing instance
detection for the execution-path-tracking module.

Figure 5 presents the number of CPU features considered
when making a migration detection on the vertical axis. The
horizontal axis and bar notation are the same as in Figure 4.
The default CRIU implementation checks 72 unique CPU
features regardless of the workload. The proposed workload-
aware detection mechanism presents a lower number of con-
sidered CPU features. Filtering out irrelevant CPU features
during migratable instance detection could improve the recall
of the proposed method.

Table I presents the number of traceable and untraceable
functional call instructions and the ratio of untraceable to
traceable when using execution path tracking. Unlike the text-
segment full-scan method, execution path tracking may lead
to tracking omissions in certain situations, such as calling a
function by a register value. It can happen when calling a
function via pointers or using Virtual Tables to override class
virtual functions in C++. Such cases impose a potential risk of
tracking miss, which can lead to a process crash after migra-
tion. Although we were unable to observe any crashes during
the experiments (the migration success detection precision is
1.0), we demonstrate how many functions were untraceable for

various workloads. Among all functions, less than 2% of the
functions were untraceable due to the reference to the register
value in a function call. Although there was no false-positive
detection, to make the function tracking complete, further
research is necessary to deal with the untraceable function
problem. If the tracking miss is not tolerable for any reason,
one can apply the text-segment full scan heuristic whose recall
is worse than the execution path tracking but better than the
default CRIU implementation.

C. Proposed System Operation Overhead

This section answers RQ-2, related to the additional over-
head to execute the proposed system to enhance the recall of
migratable instance detection. Figure 6 presents the overhead
when analyzing the workload instructions and the correspond-
ing CPU features to understand the overhead quantitatively.
Figures 6a and 6b illustrate the analysis time of the text-
segment full scan and execution path tracking methods, re-
spectively. The primary vertical axis displays the latency, and
the corresponding value is presented in a stacked bar format.
The GDB represents the time taken for a workload to load
into the GDB. Disassemble is the time to disassemble the
text section or a function. Tracking refers to the time to
follow the execution path to locate the address of the next
target function. Other comprises the accumulated latency of
various minor factors, such as obtaining the address of the
text sections, exporting the tracking results to a file, and
decoding instructions using XED. The overhead measurement
was performed on AWS c5.large instances.

For the text-segment full scan heuristic, disassembling the
entire text segment takes the majority of the time. For most
workloads, it took about 1.5 seconds to load a process to GDB
for execution path tracking in Figure 6b. The disassembling
instructions took the longest time, followed by the tracking
time. The real-world workload took longer than the syntheti-
cally generated workloads due to the large source code size.
One interesting observation is that the matrix multiplication
with OpenBlas took the longest time for the text-segment
full scan but decreased significantly for the execution-path-
tracking method. A thorough analysis reveals that the size
of the OpenBlas library is quite large compared to other
workloads, and the text-segment full scan should scan the
entire library. However, the matrix multiplication workload
accesses only a fraction of the library functions, resulting in
a significant latency reduction in the analysis time.

To compare the number of disassembled instructions for
various workloads, Table II compares the metric between the
text-segment full scan and execution path tracking methods.
The last column, Ratio, is calculated as the ratio of the number
of disassembled instructions of execution path tracking to the
text-segment full scan. The lower ratio implies that execution
path tracking filters out more unnecessary functions. For
matrix multiplication, the number of disassembled instructions
decreases significantly, about 99.4%. For the text-segment full
scan, it is observed that the overhead increases linearly with
the size of the binary or the amount of source code including



matm
ul

red
is

xg
bo

ost ad
x

pku
rds

ee
d sha

0
20
40
60
80

100
120
140
160

La
te

nc
y 

(S
ec

.)
Other
Disassemble
GDB

(a) Text Segment Full Scan overhead

matm
ul

red
is

xg
bo

ost ad
x

pku
rds

ee
d sha

0
2
4
6
8

10
12
14

La
te

nc
y 

(S
ec

.)

Other
Tracking
Disassemble
GDB

(b) Execution Path Tracking overhead

Fig. 6: The operation overhead of runtime process analyzer

Workload Text Segment Full Scan Exec. Path Tracking Ratio
matmul 8,568,489 52,335 0.006

redis 2,557,052 154,053 0.060
xgboost 1,778,354 90,316 0.051

adx 1,072,844 56,511 0.053
pku 435,113 52,565 0.12

rdseed 435,085 49,523 0.114
sha 1,072,779 49,584 0.046

TABLE II: The number of disassembled instructions for the
text segment full scan and the execution path tracking

library. The overhead of execution path tracking increases
with the number of functions actually called rather than with
the size of the binary. Although the overhead might increase
indefinitely in both cases as the program size increases, the
deduplication step to filter out the already checked functions
can help decrease the overhead. Furthermore, the efficiency of
execution path tracking to analyze functions that are likely to
be executed can significantly lower the overhead.

D. Integration with Spot Instances for Cost Savings

To answer RQ-3 regarding the practicality of the pro-
posed migratable instance detection algorithm, we present
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Fig. 7: Enhancements in the reliability and cost savings when
the proposed system is applied in a spot instance environment

the enhanced reliability and cost savings when the proposed
algorithm is applied in a spot-instance environment.

The proposed workload-aware migratable instance detection
algorithms increase the number of candidate instances to
which an interrupted spot instance can migrate. For example, a
matrix multiplication workload using the OpenBlas library in
an AWS c6a.24xlarge instance type can be migrated to seven
distinct instance types when using the CRIU implementation.
When using the proposed execution path tracking method,
the number of migratable instances increases to 449, which
can provide great flexibility when choosing target instances.
Many cloud vendors that support spot-instance services pro-
vide various datasets, such as cost savings, interruption ratios,
or instant availability [16], [31]. The effectiveness of the
proposed algorithms is quantitatively evaluated by measuring
cost savings and interrupt ratio datasets across many instance
types, due to more migratable instances.

Figure 7 presents the interruption ratio and cost savings
using a box-whisker format with different migratable instance
detection algorithms depicted on the horizontal axis. Compat-
ibility checks were performed for all workloads by having
27 groups with unique CPU features as migration source
instances. The target instances were selected from among 449
instance types of the same size. We assumed selection of an
instance type offering the lowest interruption ratio and cost
savings from the migratable instances identified by various
algorithms. To obtain the timely spot instance and interruption



ratio data, we utilized SpotLake datasets. [16].
Figure 7a presents the improvement in the interrupt ratio

from the expansion of the migration candidate nodes using
the proposed algorithm. AWS provides the interruption ratio
of spot instances, and we use the dataset to infer the reliability
of spot instances. The interruption rate refers to the frequency
at which a particular spot instance was forcibly terminated
prior to the user-initiated shutdown within the past month.
The advertised interruption ratio is categorized as less than
5%, 5%−10%, 10%−15%, 15%−20%, and more than 20%.
In the median cases, the three detection mechanisms could
select instance types whose interrupt ratio is less than 5%.
However, when using the Execution Path Tracking mechanism,
approximately 7% of the selected target instances had a termi-
nation rate of 10− 15%, while with the basic implementation
of CRIU, approximately 30% of the selected target instances
were of types with an interruption rate exceeding 15%. In the
worst case of CRIU default implementation, this ratio can be
greater than 20%, which can affect reliability.

Figure 7b presents the effectiveness of the proposed system
with respect to the cost savings by using spot instances. The
cost savings indicate the ratio of spot instance price to the
on-demand instance price for each selected instance type.
Similarly to the improvement of the interruption ratio, the
expansion of migration candidate nodes using the proposed
system is expected to choose spot instances with higher cost
savings. In the median case, the proposed execution path
tracking achieves 85% savings compared to on-demand prices,
while the CRIU implementation achieves 69% savings. In the
lowest cost savings scenario, the proposed methods achieve
61% savings, while the CRIU implementation achieves 53%
savings, showing a difference of approximately 8%.

In summary, we answered all three research questions. For
RQ-1, the execution path tracking method could achieve a
precision of 1.0 and had almost perfect recall. Compared to
the default CRIU implementation, this method has over 5×
better recall for diverse workloads. For RQ-2, execution path
tracking significantly lowers operation overhead compared to
the text-segment full scan method, and it took less than 15
seconds at most for the workload analysis. Regarding RQ-
3, by applying the proposed method in a cloud-based spot-
instance environment, the cost savings can be expected to
improve by 16% while increasing the reliability.

VI. RELATED WORK

Barbalace et al. [32] introduced compiler and operating
system extensions that enable the migration of the execution
runtime between heterogeneous ISA servers comprising X86
and ARM. The authors presented a new multi-ISA binary
architecture for the efficient migration of natively compiled
applications. The work was further demonstrated in edge-
computing environments [33]. Although the approaches al-
lowed migration between various ISA machines, they do not
support the migration of special features, such as SIMD
extensions and setjmp/longjmp. To the best of the authors’
knowledge, automatic conversion of execution runtimes with

special instructions is not yet possible, and this work is the
first attempt to detect migratable instances of machines with
distinct CPU features.

Few studies have applied the live migration process to
enhance computing resource usage efficiency. Juric et al. [34]
demonstrated the full implementation of user-specific check-
pointing, restoration, and real-time migration functionalities
for JupyterHub in a cloud environment. The authors pre-
sented a solution for cloud deployment that improves the user
experience and reduces operational costs through container
migration [4], [35]. Their objective is to minimize resource
waste when user sessions are inactive. Cunha et al. [36]
pointed out that not all cells in the Jupyter Notebook need
to run in the same environment. Although some cells require
high computational power, others may not, and it is crucial
to categorize cells and migrate them to the appropriate envi-
ronments. For the mentioned work, the proposed migratable
instance detection algorithms can increase target instances,
significantly boosting migration efficiency.

VII. CONCLUSION AND FUTURE WORK

Live migration of applications on various cloud instances
can improve efficiency, as the demand for computing resources
for execution varies between diverse scenarios. In heteroge-
neous cloud instance environments comprising distinct CPU
features, guaranteeing compatibility between the source and
destination instances is crucial for flawless operation. A simple
heuristic can consider all the CPU features of the source and
target instances, regardless of the application. However, the
precise detection of relevant CPU features that a workload
really uses can widen the pool of resources for migration
targets. To achieve this goal, we proposed a workload-aware,
live-migratable instance detection system. With a thorough
analysis of the instructions for a workload, the proposed sys-
tem can identify the mandatory features to execute a workload
flawlessly after migration. The results of the experiment reveal
that the proposed system increases the recall of migratable
instance detection by 5× compared to the naive approach
adopted by CRIU. To show the practicality of the proposed
system, we applied it to a cloud spot-instance environment
where interruption events can result in application live migra-
tion. Using the proposed algorithm makes the migration target
instance pool larger, and it enhances the cost savings by 16%
with increased reliability.

The proposed execution path tracking module needs to be
improved to track untraceable cases of calling functions using
a register value to improve the proposed system further. The
current implementation supports only the compiled languages,
such as C and C++, and we are working to enhance the system
to support scripting languages, such as Python.
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fuchi, and José A.B. Fortes. Design and implementation of middleware
for cloud disaster recovery via virtual machine migration management.
In 2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing, pages 166–175, 2014.

[3] Fei Zhang, Guangming Liu, Xiaoming Fu, and Ramin Yahyapour. A
survey on virtual machine migration: Challenges, techniques, and open
issues. IEEE Communications Surveys Tutorials, 20(2):1206–1243,
2018.

[4] Shripad Nadgowda, Sahil Suneja, Nilton Bila, and Canturk Isci. Voy-
ager: Complete container state migration. In 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems (ICDCS), pages
2137–2142, 2017.

[5] Adrian Reber. Container migration with podman on rhel. https://www.
redhat.com/en/blog/container-migration-podman-rhel, 2019.

[6] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The
design and implementation of zap: A system for migrating computing
environments. SIGOPS Oper. Syst. Rev., 36(SI):361–376, dec 2003.

[7] Chris Currier. Protocol Buffers, pages 223–260. Springer International
Publishing, Cham, 2022.

[8] Ludovic Courtès. Reproducibility and performance: Why choose?
Computing in Science Engineering, 24(3):77–80, 2022.

[9] GCC. Function multiversioning, 2012.
[10] Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung Chiang, and

Xinyu Wang. How to bid the cloud. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, page 71–84, New York, NY, USA, 2015. Association
for Computing Machinery.

[11] Prateek Sharma, David Irwin, and Prashant Shenoy. How not to bid the
cloud. In 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16), Denver, CO, June 2016. USENIX Association.

[12] K. Lee and M. Son. Deepspotcloud: Leveraging cross-region gpu spot
instances for deep learning. In 2017 IEEE 10th International Conference
on Cloud Computing (CLOUD), pages 98–105, 2017.

[13] Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, and
Prashant Shenoy. Spoton: A batch computing service for the spot market.
In Proceedings of the Sixth ACM Symposium on Cloud Computing,
SoCC ’15, page 329–341, New York, NY, USA, 2015. Association for
Computing Machinery.

[14] Fangkai Yang, Lu Wang, Zhenyu Xu, Jue Zhang, Liqun Li, Bo Qiao,
Camille Couturier, Chetan Bansal, Soumya Ram, Si Qin, Zhen Ma,
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