
Time-Series Analysis for Price Prediction of
Opportunistic Cloud Computing Resources

Sarah Alkharif , Kyungyong Lee, and Hyeokman Kim

Abstract Cloud computing resources are offered in various forms, and surplus of
computing resources are provided at cheaper price. A leading cloud computing ven-
dor, Amazon Web Services, provides such opportunistic resources as EC2 spot in-
stance whose price changes dynamically based on the resource demand from users.
We analyze the spot instance price logs and apply various predictive analysis algo-
rithms to better predict future spot instance price. By applying various train dataset
modeling heuristics, we uncover that the SARIMA algorithm achieves the best pre-
diction accuracy in spot price prediction; it shows 17% more accuracy than other
algorithms that are widely used for spot instance applications. By applying contri-
butions in this paper, we expect that spot instance users can decrease monetary cost
while improving system stability.

1 Introduction

Cloud computing provides various types of compute resources to serve diverse ap-
plication scenarios. The cloud computing frees the burden of system administration
overheads without incurring prohibitive initial hardware purchase cost. From the
service provider’s perspective, fully utilizing the already established hardware re-
sources and services is crucial to maximize monetary gain. As the users’ resource
demand can vary from time to time, some cloud computing providers offer services
at cheaper price than the regular price to maximize hardware/service utilization. For
instance, Amazon Web Services (AWS), a leading cloud computing vendor, pro-

Sarah Alkharif
Kookmin University, Seoul. South Korea, e-mail: saraalkharif@kookmin.ac.kr

Kyungyong Lee
Kookmin University, Seoul. South Korea, e-mail: leeky@kookmin.ac.kr

Hyeokman Kim
Kookmin University, Seoul. South Korea, e-mail: hmkim@kookmin.ac.kr

1

2 Sarah Alkharif , Kyungyong Lee, and Hyeokman Kim

vides its surplus of EC2 computing resources at a cheaper price in the form of spot
instance. A user who wants to use a spot instance bids for a price that one is will-
ing to pay, and if the bid price is higher than the spot price that is decided by the
service provider, one can get the resource allocated and pays for the spot price in
the hourly basis. Other than AWS, Google Cloud Engine provides such opportunis-
tic resources in the form of preemptive instances, and Microsoft Azure provides its
excess compute capacity as low-priority VM.

Though users can utilize the opportunistic resources at a cheaper price, sudden
service termination can happen at anytime as the demand for the computing resource
changes. To mitigate the chance of sudden service interruption, few works were
conducted to better predict and model the price change of EC2 spot instance in
literature. Ben-Yehuda et al. [1] and Zhao et al. [10] tried to predict the future spot
instance price using various predictive analysis algorithms, but they all concluded
that the spot price is rather random and hard to make meaningful prediction for
future price changes. Since then, most of studies that are related to spot instance
focus on the handling sudden service interruption [9, 2, 6, 5] or spot instance bid
strategy [7, 11].

In this paper, we apply various time-series analysis algorithms to predict price
change pattern of AWS EC2 spot instances. By carefully designing the period of
train datasets, we could uncover that applying seasonal-arima (SARIMA) can im-
prove the accuracy of price change prediction error by 17% on average comparing
to the naive method that references the most recent price to predict future price [5].
In addition to the contribution of improved price prediction accuracy, we could also
discover that the configuration values to get the best prediction accuracy differs sig-
nificantly across different availability zones and instance types. Based on the exten-
sive experiments and promising results, we bring up an opportunity of improving
spot instance prediction accuracy that can result in significant cost gain for cloud
computing users with increased system stability.

2 Time-Series Analysis for AWS EC2 Spot Instance Price

In this work, we use various time-series analysis algorithms to predict future spot
instance price. First, we apply a simple mean method that uses the average of pre-
vious price to make prediction. In the mean method, assuming the price of instance
in time t − 1 is xt−1, to predict the price of an instance at time t, we use previous
instance price until lag that is notated as n (Equation 1).

ŷt =
xt−1 + xt−2 ++ xt−n

n
(1)

Naive method is another simple model that references only the most recent spot
instance price to make prediction for future time windows 2. For naive and mean
methods, the expected value can be used to make prediction for longer period of
time later than t.

Time-Series Analysis for Price Prediction of Opportunistic Cloud Computing Resources 3

ŷt = xt−1 (2)

Seasonal naive method is similar to naive method that uses the most recent obser-
vation, but it utilizes seasonal information in making prediction. Assuming the sea-
sonal period is s, the predicted value at time t is the observed value at time t − s [3].

ŷt = xt−s (3)

Auto Regressive Integrated Moving Average (ARIMA) is a popular statistical
model and widely applied for time series datasets. The algorithm is a combina-
tion of auto-regressive (Equation 4) and moving-average model (Equation 5), with
three parameters (p,d,q). p is the number of auto-regressive terms that indicates
dependencies on past values, d is the degree of differencing to make input dataset
stationary, and q is the number of lagged forecast errors in the prediction equation
that depends only on random error terms.

ŷt = w0 +β1yt−1 +β2yt−2 +βnyt−n + εt (4)

ŷt = w0 + εt +δ1εt−1 +δ2εt−2 + ...+δnεt−n (5)

If we set d = n, the equation becomes

ŷt = w0 +β1yt−1 +β2yt−2 +βnyt−n +δ1εt−1 +δ2εt−2 + ...+δnεt−n (6)

The term βi is the weight that is applied to prior values in the time series, δi is
auto-correlation coefficients at lags, and εi is the residual error term.

Fig. 1 SARIMA example

SARIMA stands for Seasonal ARIMA that allows ARIMA model to take into
account seasonal characteristics that some seasonal patterns repeat along many pe-
riods in data sets. For example, in Figure 1, taking historical time series data X for
duration of one year, we will predict ys with a seasonal period, s = 4, then the model
splits the length of time series by the number of seasonal period. We get 4 periods,

4 Sarah Alkharif , Kyungyong Lee, and Hyeokman Kim

and each period contains 3 months of data. In the figure, assuming (A) as 4th lag,
(B) 3rd lag, (C) 2nd lag, and (D) as the first lag, the seasonal lag time for X would
be (x0,xs−1,xs−2,xs−3) and the number of periods will be chosen based on num-
ber of lags given by AR (Equation 4) and MA (Equation 5). If we set AR and MR
coefficient as 2 then the AR would be βs and βs−1 and the MA δs and δs−1.

Prophet model is developed by Facebook‘s Core Data Science team [8]. Prophet
model forecasts time series dataset based on an additive and non-linear model fit
with seasonality and holidays. The prophet algorithm predicts yt by computing
growth, seasonality, and holidays:

ŷt = gt + st +ht + εt (7)

The term gt is the growth function to compute how the series has grown and the
expected values for continuing growth, and st seasonality change based on series
behaviors, ht the effects of holidays, εt the error term.

3 Evaluation

To evaluate the effectiveness of applying various algorithms to predict spot instance
price, we fetch 11 months (from March. 2016 to Feb. 2017) of spot price log files
from the AWS public API service. From the log files, we extracted the timestamp,
spot price, availability zone, and instance type. The price of each instance is stored
hourly-basis using time-series data format in R with the period of 24 hours. The on-
demand instance price is different for different instance types in different regions,
we normalize the spot instance price to that of on-demand instance. The normalized
value indicates the cost gain that one can expect while using spot instances; smaller
value indicates more gain.

At the time of writing, there are over 60s of AWS EC2 instance types that are
served in over 30 availability zones. It becomes prohibitive to present the experi-
ment results from all instance types, and we select representative instances in Gen-
eral, GPU, Compute-, Memory-, and Storage-optimized types that are m4.2xlarge,
g2.2xlarge, c3.2xlarge, r3.2xlarge, and i2.2xlarge, respectively. The instances are
not served in all availability zones, and we choose 18 zones that provide the afore-
mentioned instance types for experiments.

We evaluate naive, seasonal naive, mean, seasonal ARIMA, linear regression,
and Prophet algorithms using packages in R 3.2.4. Among them, linear regression
and Prophet always perform worse than Arima, and we do not show the result from
them. Different algorithms have distinct heuristics to choose the train dataset win-
dow. Naive and seasonal naive methods simply reference values from the previous
observations. For mean method, we use previous 1, 3, 7, 15, 30, 60, 90, and 120
days of prices to get mean value for prediction. However, using only the most recent
data (1 day) shows the best result, and we exclude other results. For seasonal Arima,
we differentiate the training dataset period as 30, 60, 90, 120, and 150 days. In the

Time-Series Analysis for Price Prediction of Opportunistic Cloud Computing Resources 5

prediction step, we use a model built by auto.arima method of R. After building a
model, we use the model for the next 1, 4, 8, 15, and 30 days. Overall, seasonal
Arima has two configurations in the modeling data, previous days used in modeling,
the number of days for a model to be used, and we notate the value using parenthe-
sis. For all algorithms, we predict the normalized spot instance price for the next 24
hours and calculate root-mean-squared-error to evaluate each model.

0.00

0.05

0.10

0.15

0.20

Compute GPU Storage General Memory

EC2 instances (−optimized)

Te
st

 e
rr

or
Algorithms arima mean naive snaive

Fig. 2 Test error rates of different predictive algorithms. Regardless of the instance types, Arima
shows the least error rate (lower is better).

Figure 2 shows the test error of different algorithms. For seasonal Arima and
mean, we select the best performing configuration values. Each algorithm is exe-
cuted in all 18 availability zones, and the mean test error is presented. Regardless
of instance types, Arima algorithm shows the best prediction accuracy among other
methods. Previous works on predicting spot instance price insisted that using predic-
tive analysis algorithms did not help to improve the prediction accuracy. With that,
most systems using spot instances usually rely only on the very recent price (naive
method) only. However, with thorough experiments and train data configuration, we
could uncover the effectiveness of using Arima model to predict spot instance price
for the first time. In the figure, we can observe that different instance types show
different test error rate, and we expect the different hardware specifications, such as
GPU cards, can result in distinct supply and demand pattern.

From Figure 2, we observed that the Arima algorithm shows the best perfor-
mance. As noted earlier, we use various combinations of modeling data period and

6 Sarah Alkharif , Kyungyong Lee, and Hyeokman Kim

Fig. 3 The impact of train data configurations to the overall test error rate of GPU instance (lower
is better).

model use days. To see the effect from the different parameters, we show the test
errors of GPU instances for different train data configurations in Figure 3. A group
of bars in the left two clusters show the test error value of us-west-1a and us-west-2c
that show the least impact from the distinct parameters. The right two bars show the
test error of ap-northeast-1a and ap-southeast-1a that show the most impact from the
parameters. Other availability zones that are not shown in the chart show the pattern
in-between. In the legend, the first value separated by comma means the number
of days used in the SARIMA modeling step, and the second value after the comma
indicates the number of days a model is used after it is built. In ap-southeast-1a
zone, the worst configuration shows 50% more error rate than the best configura-
tion. Furthermore, the worst configuration in ap-southeast-1a (150, 1) is the best
configuration for ap-northeast-1a. We suspect that such diversity was not consid-
ered in the previous works that try to predict spot instance price, and they could not
eventually find a model to make better prediction.

To check if there is optimal Arima train data configuration, we list the best per-
forming train data parameters in Table 1. From the table, we can see that there is
no globally optimal configurations. Contrary to general belief, building a model
with train dataset with shorter time window sometimes performs better than longer
train dataset. Furthermore, using a model longer period of time occasionally per-
form better. From the table, we conclude that predicting spot instance price needs
careful consideration in building train dataset, and the configuration needs to be
dynamically updated.

Time-Series Analysis for Price Prediction of Opportunistic Cloud Computing Resources 7

Availability Zones General Compute Memory Storage
ap-northeast-1a (60,4) (60,4) (60,4) (120,15)
ap-northeast-1c (60,2) (60,2) (120,15) (120,15)
ap-southeast-1a (150,1) (150,1) (150,1) (150,1)
ap-southeast-1b (150,1) (60,2) (150,1) (150,1)
ap-southeast-2a (60,4) (60,4) (150,1) (150,1)
ap-southeast-2b (60,4) (60,2) (150,1) (120,15)

eu-west-1a (60,4) (90,8) (30,2) (150,1)
eu-west-1b (60,4) (60,2) (30,1) (120,1)
eu-west-1c (60,2) (60,4) (30,1) (150,1)
us-east-1a (50,1) (150,1) (30,1) (60,2)
us-east-1c (150,1) (150,1) (30,1) (150,1)
us-east-1d (60,2) (150,1) (30,2) (150,1)
us-east-1e (60,4) (150,1) (30,1) (60,4)
us-west-1a (60,2) (150,1) (30,1) (120,15)
us-west-1b (60,4) (150,1) (30,1) (120,15)
us-west-2a (60,2) (150,1) (150,1) (150,1)
us-west-2b (60,4) (150,1) (30,1) (150,1)
us-west-2c (60,2) (60,2) (60,2) (150,1)

Table 1 Best Arima model configuration for different instance types in distinct availability zones

4 Discussion and Future Work

With thorough analysis about spot instance price prediction algorithms, we uncover
the improved prediction accuracy as well as challenges in making better prediction.
Based on the observation, we are going to further improve the algorithm in the
following way.

The Good: Spot Price Change Prediction Most of previous works that tried to
predict spot instance price concluded that the price is random, and applying predic-
tive analysis algorithms does not really help to improve prediction quality [1, 10]. In
this work, we applied multiple time-series analysis algorithms by carefully design-
ing the period of modeling data and parameters. With extensive evaluation, we could
uncover that applying predictive analysis algorithms improves the price prediction
accuracy over 17% on average comparing to a method that uses only the most recent
price [5, 7].

The Challenge: No Globally Optimal Model Despite of increasing prediction
accuracy by applying various techniques, we could not find the globally optimal
algorithm and training data specification for different availability zones and distinct
instance types. It makes challenging to apply the algorithms for real applications
that can be deployed in any environments.

The Promising: Applying Hybrid Models Even with the diversity of prediction
accuracy for different algorithms and train data configuration, it is observed that the
train error and test error show high correlation. Pearson product-moment correlation
coefficient of train and test error is 0.904 - note that the coefficient has a value from
-1.0 to 1.0, and the value of 1.0 means a perfect positive linear correlation, -1.0
means a negative correlation, while 0.0 means no correlation. We currently work on

8 Sarah Alkharif , Kyungyong Lee, and Hyeokman Kim

referencing the train error to better choose the algorithms and train data period. We
are going to apply the heuristic to an application that utilizes GPU-based AWS EC2
spot instances to execute deep learning tasks in a cost efficient way [5].

The Benefit: Lower Cost while Using Spot Instances With the improvement in
the prediction accuracy, we expect it will result in the cost gain by cherry-picking
few availability zones and instance types with lower prices. We are working on a
theoretical model that specifies correlation between the prediction accuracy and the
real cost gain. We are also working to utilize the predicted outcome to anticipate
instances that are likely to incur unexpected service interruption that is the crucial
factor of making users reluctant to use spot instances. In the prediction step, we try
to anticipate the spot instance price of the next 24 hours. In an ideal case, if the task
migration cost among different availability zones and instance types are negligible,
we can issue more frequent migrations by relying on prediction module that has
lower prediction error rate as the prediction window becomes shorter. By applying
task migration heuristics that are proposed in literature [6, 5], we expect to decrease
the prediction time window to increase the accuracy.

5 Related Work

Since the introduction of spot instance from AWS EC2 service, many attempts were
made to predict price change pattern in the near future. After thorough investigation
of spot instance price logs, Ben-Yehuda et al. [1] concluded that applying predic-
tive analysis algorithms in the prediction of spot instance price is meaningless as
it changes randomly. Javadi et al. [4] tries to apply statistical model to the price
logs by applying MLE method. Though the approach helps to understand the spot
price distribution, it does not help to predict future price. Similar to our work, Zhao
et al. [10] applied ARIMA model to make spot instance price prediction, but they
could not uncover the findings as we do in this paper. The authors performed experi-
ments only for one instance type in a single region. As shown in this paper, the price
change pattern differs significant among different environments, and we expect the
authors missed the characteristics.

As it was widely known that the spot instance price is hard to be predicted, most
of recent work focused on increasing stability of applications that run on spot in-
stances. DeepSpotCloud [5] and Flint [6] proposed fast task migration mechanisms
when a service interruption event happens. As the spot price prediction is challeng-
ing, both approaches used the naive method [11, 7], and we believe that the finding
in this paper can significantly improve the cost gain and system stability of the pre-
vious approaches.

Time-Series Analysis for Price Prediction of Opportunistic Cloud Computing Resources 9

6 Conclusion

In this work, we try to predict future price for diverse instance types of AWS EC2
spot instances in 18 availability zones using various predictive analysis algorithms
(naive, seasonal naive, mean, SARIMA, linear regression, and Prophet) to see if
they can help to better predict the future spot instance price. Different from what
is generally known, we uncover that SARIMA model performs better than simple
methods. To the authors’ best knowledge, this is the first work that uncovers apply-
ing predictive analysis helps to better predict the future spot instance price. To get
better result, we need to tune the train dataset by differentiating the modeling period
and model use time, and the tuning steps needs to optimized to further improve the
accuracy.

Acknowledgements This work is supported by the National Research Foundation of Korea (NRF)
Grant funded by the Korean Government (MSIP) (No. NRF-2015R1A5A7037615 and NRF-
2016R1C1B2015135), the ICT R&D program of IITP (2017-0-00396), and the AWS Cloud Credits
for Research program.

References

1. Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing ama-
zon ec2 spot instance pricing. ACM Trans. Econ. Comput. 1(3), 16:1–16:20 (2013). DOI
10.1145/2509413.2509416. URL http://doi.acm.org/10.1145/2509413.2509416

2. Gong, Y., He, B., Zhou, A.C.: Monetary cost optimizations for mpi-based hpc applications on
amazon clouds: Checkpoints and replicated execution. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’15,
pp. 32:1–32:12. ACM, New York, NY, USA (2015). DOI 10.1145/2807591.2807612. URL
http://doi.acm.org/10.1145/2807591.2807612

3. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice (2012). URL
https://www.otexts.org/book/fpp

4. Javadi, B., Kondo, D., Vincent, J.M., Anderson, D.: Discovering statistical models of avail-
ability in large distributed systems: An empirical study of seti@home. Parallel and Distributed
Systems, IEEE Transactions on 22(11), 1896 –1903 (2011). DOI 10.1109/TPDS.2011.50

5. Lee, K., Son, M.: Deepspotcloud: Leveraging cross-region gpu spot instances for deep learn-
ing. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD) (2017)

6. Sharma, P., Guo, T., He, X., Irwin, D., Shenoy, P.: Flint: Batch-interactive data-intensive
processing on transient servers. In: Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys ’16, pp. 6:1–6:15. ACM, New York, NY, USA (2016). DOI
10.1145/2901318.2901319

7. Sharma, P., Irwin, D., Shenoy, P.: How not to bid the cloud. In: 8th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 16). USENIX Association, Denver, CO (2016)

8. Taylor, S.J., Benjamin, L.: Forecasting at scale. In: Facebook Technical Report (2017)
9. Yan, Y., Gao, Y., Chen, Y., Guo, Z., Chen, B., Moscibroda, T.: Tr-spark: Transient computing

for big data analytics. In: Proceedings of the Seventh ACM Symposium on Cloud Computing,
SoCC ’16, pp. 484–496. ACM, New York, NY, USA (2016). DOI 10.1145/2987550.2987576.
URL http://doi.acm.org/10.1145/2987550.2987576

10. Zhao, H., Pan, M., Liu, X., Li, X., Fang, Y.: Optimal resource rental planning for
elastic applications in cloud market. In: Proceedings of the 2012 IEEE 26th Interna-

10 Sarah Alkharif , Kyungyong Lee, and Hyeokman Kim

tional Parallel and Distributed Processing Symposium, IPDPS ’12, pp. 808–819. IEEE
Computer Society, Washington, DC, USA (2012). DOI 10.1109/IPDPS.2012.77. URL
http://dx.doi.org/10.1109/IPDPS.2012.77

11. Zheng, L., Joe-Wong, C., Tan, C.W., Chiang, M., Wang, X.: How to bid the cloud. In: Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data Communication, SIG-
COMM ’15, pp. 71–84. ACM, New York, NY, USA (2015). DOI 10.1145/2785956.2787473.
URL http://doi.acm.org/10.1145/2785956.2787473

