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ABSTRACT
Public cloud computing providers offer a surplus of computing
resources at a lower price with a service of a spot instance. Despite
the possible great cost savings from using spot instances, sudden
resource interruption can occur as resource demand changes. To
help users estimate cost savings and the possibility of interrup-
tion when using spot instances, vendors provide diverse datasets.
However, the effectiveness of using the datasets has not yet been
quantitatively evaluated, and many users still rely on the guess
when choosing spot instances. To help users lower the chance of
interruption of the spot instance for reliable usage, in this paper,
we thoroughly analyze various datasets of the spot instance and
present the feasibility for value prediction. Then, to measure how
the public datasets reflect real-world spot instance interruption
events, we conduct real-world experiments for spot instances of
AWS, Azure, and Google Cloud. Combining the dataset analysis,
modeling, and the real-world spot instance interruption experiment,
we present a significant improvement in reducing the possibility of
interruption events.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • In-
formation systems→Web log analysis.
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1 INTRODUCTION
Cloud computing provides compute resources elastically without
the burden of system operation overhead and changes the way we
consume compute resources. The core success of cloud computing
is due to its on-demand billing model that allows users to dynam-
ically start and stop instances based on its application needs and
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pay for what they have actually used. To support elastic resource
usage, cloud service providers should prepare abundant resources
to meet resource usage spikes. Such a plentiful resource preparation
inevitably results in resource wastage when computing demand is
low. To encourage instance usage when demand is low, public cloud
vendors provide the surplus computing resources at a discounted
price which can be more than 90% cheaper than the on-demand
price in some cases. The billing model is called spot instances, and
they are offered by most public cloud service providers, AWS [1],
Azure [54], Google Cloud Platform (GCP) [18], Alibaba [36], Oracle
Cloud Preemptible Instances, and IBM Transient Virtual Servers.

In the early days of spot instance offering, most vendors adopted
an auction mechanism where a user sets a bidding price and a
provider sets a spot price. If the bidding price is higher than the spot
price, a user gets granted an instance and pays for the spot price,
not the bidding price. Based on the compute resource demands,
a service provider changes the spot price, and if the spot price
becomes higher than the initial bidding price, a spot instance is
revoked, which is generally referred to as instance interruption.
Such an instance interruption can negatively impact applications’
reliability, and users should be prepared for the event. To help
users improve reliability when using spot instances, cloud vendors
provide diverse datasets publicly. One of the most representative
datasets is the spot instance price, which presents the spot price
at a specific time. Many research was conducted using the spot
instance price dataset to analyze the spot price itself [1, 13, 21, 36,
51], using the spot instance dataset to enhance reliability for diverse
applications [2, 11, 19, 30, 34, 43, 45, 49], or suggesting an optimal
bidding price using the spot price prediction [3, 15, 25, 26, 44, 60].

The spot price dataset was a precious source of informationwhen
using spot instances reliably, especially for AWS, but it changes with
the new spot instance operation policy. With the new policy, the
advertised spot price does not reflect the spot instance interruption
anymore, and the frequency of the change in data becomes very
low [6, 20] which greatly degrades the application of the dataset and
invalidating the result of previous research. Meanwhile, new data
sets of spot instances are released on the web to help users build
a reliable resource pool of spot instances [31]. The new datasets
include the interruption ratio for the previous month provided by
Azure and AWS, and the instant availability information provided
by AWS. The new datasets can be of great help for spot instance
users, as they provide the historical interruption ratio and instanta-
neous availability information. However, thorough investigation
of the newly provided datasets has not yet been performed, and
quantitative evaluation on the correlation of the dataset and the
spot instance interruption has not been carried out yet. Given that
sudden spot instance interruption is a major hurdle when adopting
a spot instance as the main compute resource pool, it is crucial to
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estimate the likelihood of a spot instance being interrupted at least
in the near future. However, predicting future spot instance inter-
ruptions or building a statistical model for interruption behavior
can be very challenging from outside of cloud service vendors’ view
as interruption events detail is not accessible.

To quantitatively evaluate and model spot instance interruption
events, one should know when the interruption events happen
for various instance types that are located in global regions and
availability zones. Service providers may have such records, but the
information is not publicly available. For example, Yang et. al. [54]
proposed a spot instance interruption prediction model for Azure
spot instances using the internal dataset of interruption records
that are not publicly available, and it limits the development of pub-
licly available research results. To model spot instance interruption
events without proprietary information, SciSpot [23] and Pham et.
al. [39] conducted real-world experiments to observe spot instance
interruption events by running spot instances until an interruption
occurs for GCP and AWS, respectively. Even after gathering logs of
interruption events, it can be challenging to uncover features that
are related to the interruptions. In the case of AWS, the spot price
was a good indicator, but it is no longer valid after the change in
the operation policy [6, 20].

Based on the observation that the prediction and modeling of
spot instance interruption events is challenging even with newly re-
leased spot instance datasets, we first analyze the characteristics of
the spot price, prior period interruption ratio, and instant availabil-
ity dataset that are provided by AWS, Azure, and GCP. To validate
whether public datasets reflect the real behaviors of spot instance
interruptions and compare spot instance reliability of multiple ven-
dors, we conducted spot instance interruption tests for AWS, Azure,
and GCP. Based on the public dataset analysis and the result of the
real-world spot instance interruption experiment, we argue that
precise prediction of the value of the instant spot instance availabil-
ity dataset can lower the probability of spot instance interruption
and confirm the argument quantitatively. Overall, we conclude that
the Azure spot instances showed the highest reliability, followed by
GCP and AWS. Though AWS showed the lowest reliability, we find
that the data set provided by AWS is really helpful in conjecturing
spot instance reliability. Using a proposed dataset value predictor,
the running time of AWS can increase by 63.2% for instances with
an initial high score and by 168% for instances with an initial low
score. However, for Azure and GCP, which provide limited datasets,
we could not find a strong correlation of spot instance reliability
with the provided datasets, as we could with the AWS dataset.

In summary, the main contributions of this paper are as follows.

• Comparison of the reliability of AWS, Azure, and GCP. To
the authors’ best knowledge, this is the first work to compare
the spot instance reliability of major multiple vendors.

• Thorough analysis of spot instance datasets including price,
interruption ratio, and availability, to discover correlations
with the spot instance interruptions mainly for AWS.

• Quantitatively presenting the effectiveness of a simple model
when predicting spot instance dataset values.

• Proposing a heuristic to recommend spot instance types to
lower the interruption ratio without using secretive internal
operation logs exclusively owned by cloud vendors.

2 CLOUD SPOT INSTANCE AND DATASETS
When using spot instances, the cost saving ratio over the on-demand
instance and the reliability of a spot instance are the most impor-
tant metric for most users. To help users estimate the benefit and
risks when using spot instances, the cloud vendors provide various
datasets; the spot instance price from the beginning and the more
recent interruption ratio and instant availability information.

2.1 Depreciation of Price Dataset
Since the introduction of the spot instance service in 2009, the spot
price dataset is publicly available and triggered many research from
various perspectives. Statistical analysis of the spot instance price
dataset was performed in a comprehensive way [1, 13, 15, 21, 33, 36,
40, 51, 52]. Other works focused on proposing an optimal bidding
price to reduce the risk of instance interruption [3, 17, 26, 32, 42,
44, 46, 57, 60]. Another type of work focused on running various
applications on spot instances reliably using spot instance price
datasets, such as web server [2], big data processing [53], deep
learning training [30, 48] and inference [59], batch processing [34,
45], and scientific high-performance computing applications [61].
Other works are carried out using a dataset from other vendors,
Azure [54, 55], GCP [18, 23], and Alibaba cloud [36].

One of the reasons that many researches have been conducted
using AWS spot instance and its price dataset is owing to its dy-
namically changing price patterns, which reflect the spot instance
interruption events very well. By comparing the advertised spot
price and bidding price, a user can easily conjecture the interruption
possibility. However, modeling spot instance interruption using a
price dataset becomes impossible since the spot instance operation
policy change [6, 20]. With the new change, the spot price does not
change as often as before. More importantly, the spot price does
not indicate an instance interruption; though the advertised spot
price is lower than a bidding price, an interruption can still happen.
The operation policy change makes the AWS spot instances similar
to other vendors’ spot instances which implies the spot price rarely
changes, and it makes most of the previous research that relied on
the spot price datasets becomes useless.

2.2 Appreciation of Availability Dataset
As the usefulness of the spot price dataset decreases from the per-
spective of inferring spot instance reliability, the service vendors
started to provide new types of datasets related to instance availabil-
ity. AWS and Azure provide the interruption ratio of an instance in
the previous time frame, for example, 30 days. The dataset classifies
interruption ratios into five categories, less than 5%, between 5%
and 10%, between 10% and 15%, between 15% and 20%, and more
than 20%. By using the dataset of the previous interruption rate,
users are expected to infer spot instance’s future reliability.

Different from the interruption ratio dataset which simply pro-
vides the statistics from the previous period, AWS provides a new
data set called Spot Placement Score (SPS). The vendor did not
disclose the internal details of how the score is calculated, but it is
known to present a timely spot instance’s availability. In the SPS, a
type of spot instance is assigned an integer score ranging from one
to three; the higher score implies greater availability. An unique
SPS is assigned for each instance type in an availability zone. Users
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Figure 1: Spot instance dataset value distribution from multiple vendors
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Figure 2: Spot datasets that have been changed during the
observation period

can access dataset through the AWS console or API service, but
it imposes many restrictions when querying the value. To resolve
the query restriction, SpotLake [31] implemented many heuristics
and served the dataset as raw files. Note that Azure and GCP do
not provide a similar dataset, and the analysis on the availability
dataset will be based only on SPS.

3 ANALYSIS OF SPOT INSTANCE DATASET
To better understand the characteristics of different spot instance
datasets, we present empirical analysis results of publicly available
spot instance datasets provided by SpotLake [29]. From SpotLake,
we could download the spot price dataset of AWS, Azure, and GCP.
For the spot instance interruption ratio dataset, we get datasets
from AWS and Azure. For instant availability information, we get
the AWS SPS dataset. In the analysis, datasets from 1 November
2022 to 31 August 2023 were used.

Figure 1 shows the cumulative distribution function (CDF) of
the values of the multiple spot instance dataset. Figure 2a compares
the savings ratio, calculated as (1.0 − 𝑆𝑝𝑜𝑡𝑃𝑟𝑖𝑐𝑒

𝑂𝑛−𝑑𝑒𝑚𝑎𝑛𝑑𝑃𝑟𝑖𝑐𝑒
) × 100, of

AWS, Azure, and GCP. Figure 2b compares the instance interruption
ratio of AWS and Azure. Both vendors provide the dataset with
values in the range of five categories, and we match each category
to a numeric value between increments of 1.0 and 3.0 by 0.5. The
most frequent interruption ratio of more than 20% is matched to
1.0, and the least value of less than 5% is matched to 3.0. We name
the converted value as interrupt-free score following the notation
proposed in SpotLake [31]. Figure 2c presents the distribution of
the instant availability dataset provided by AWS. We use the SPS
dataset with the score range provided. To distinguish vendors, we
use yellow-solid, blue-dotted, and green-dashed lines to indicate
AWS, Azure, and GCP, respectively. In the figures, the vertical axis
shows the distribution, and the horizontal axis shows the score. For
all three sub-figures, the large score means more reliable status.

In the figures, it is apparent that AWS has the lowest cost savings
(Figure 2a) and a higher frequency of interruption of the spot in-
stance (Figure 2b). GCP provides only the price dataset and shows a
higher median cost savings ratio than AWS. Regarding the interrupt-
free score, the median score of AWS is around 2.5, which means
the interruption ratio between 5% and 10%, while that of Azure is
around at 3.0, which is less than 5%. Only AWS provides instant
availability information, and we can observe that most of the spot
instances have been allocated near 3.0, which is the best score.

Figure 2 shows the pattern of temporal change of three spot
datasets averaged for all instance types collected in each subfigure.
Figure 2a compares the savings ratio for the spot instance, and we
can observe that regardless of the vendor, the savings value rarely
changes over time. The low frequency of the price change of the
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Figure 3: The change pattern of instant availability dataset
shows a strong hourly and daily change pattern

AWS spot instance agrees with previous work that analyzed the
recent change in the behavior of the AWS spot instance [6, 20]. Fig-
ure 2b presents the pattern of temporal change of the interrupt-free
score. To check whether there exists a visually noticeable change
pattern, we separated the graph of AWS and Azure to present them
in a micro-scale. Similarly to cost savings, both AWS and Azure do
not show a noticeable change pattern over time. Figure 2c presents
the temporal change pattern of the AWS SPS dataset. Unlike the
cost savings and interruption dataset, the SPS dataset shows a si-
nusoidal periodic pattern for different days. From the analysis, we
can uncover the unique and noticeable pattern of SPS change that
intrigues further research and analysis. Note that the range of the
vertical axis is different for distinct datasets. We closely observed
the pattern of savings and interruption-free score in a small scale
but could not find a pattern similar to SPS.

To further analyze the pattern of change in the SPS value, Fig-
ure 3a shows the SPS values averaged over an hour of a day. In the
analysis, we used resources located globally in multiple regions and
used the local time zone of each availability zone. From the figure,
we can discover that the SPS is lower in the morning. Then the SPS
gradually increases and reaches its maximum at night, which is the
time when cloud usage is expected to be low. To see whether the
change in the SPS value has a weekly pattern, Figure 3b presents
the average SPS value by day, shown on the horizontal axis. We
can observe that the SPS value is higher on weekends and lower
on weekdays. Further analysis of SPS is presented in the Appendix.
Note that we analyzed the spot price and the interruption ratio, but
we could not observe a noticeable pattern.

We could observe a more frequent and periodic data update
pattern of the AWS SPS dataset. To further analyze how often spot
instance dataset changes, Figure 4 shows the CDF of the frequency
of data change. The vertical axis shows the distribution and the
horizontal axis shows how long a value remains unchanged. The
larger value, located on the right side of the figure, implies that
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Figure 4: The CDF of value change frequency. The SPS dataset
provided AWS shows the most frequent data update

the value does not change for a longer period of time. In the figure,
the distribution of all datasets is presented. Among them, the AWS
SPS with a yellow solid line with triangle markers shows the most
frequent update compared to other dataset. For the cost savings
dataset, we assume that a cost savings value has changed when the
ratio has increased or decreased by more than 3%.

From the analysis of the various spot instance datasets, we found
that spot instances from Azure and GCP show relatively higher
cost savings than AWS. The interruption ratio of AWS is higher
than that of Azure. Only AWS SPS shows a pattern of daily and
hourly changes. The values of AWS SPS changed frequently, and
the frequency of change in other datasets is greater than one day.

4 PREDICTING SPOT DATASET CHANGE
When using spot instances, the prediction of future interruption
events and probability estimation can be of great help to improve re-
liability. To achieve the goal, it is important to discover appropriate
features that correlate with the interruption events. The analysis
of the spot instance dataset reveals that the price and interruption
ratio information has little change over time, while the instant
availability information of AWS SPS changes often and regularly.
Taking into account the recent research outcomes about spot in-
stance price [6, 20, 31], the spot price has little correlation with the
interruption of the spot instance. The spot instance interruption
ratio presents the prior 30 days of interruption statistics, and it
can be far from predicting future availability. In this context, we
propose a model to predict the instant availability dataset expecting
that the precise prediction can help to improve the reliability of the
spot instance, which will be evaluated later.

4.1 Modeling Instant Availability Dataset
The instant availability dataset prediction model uses the SPS of
the prior period as input features and predicts future SPS values.
Formally speaking, the input dataset and features of𝑿 are composed
of 𝑁 distinct instance types in different availability zones, which is
the unit of the distinct SPS being provided, and 𝐷 features which
represent an SPS value at different timestamp. Assuming that data
collection of the SPS dataset occurs with a period of 𝑝 minutes,
we can use the previous 𝐷 collected dataset for training, which
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3H 6H 12H 24H 48H 72H
LR 0.96 0.97 0.98 0.97 0.97 0.96
RF 0.96 0.98 0.98 0.98 0.97 0.97

XGboost 0.97 0.99 0.98 0.98 0.97 0.97
SVC 0.96 0.97 0.97 0.98 0.96 0.96

Prophet 0.96 0.96 0.97 0.98 0.97 0.97
ARIMA 0.95 0.95 0.97 0.97 0.96 0.96
Table 1: F1-score of SPS prediction using different models

means that we use datasets collected in the last 𝐷 × 𝑝 minutes.
Similarly, the target dataset to predict is indicated as 𝒀 that has
𝑁 different instance types and next 𝐾 SPS values to predict. 𝑥𝑖𝑑 ,
where 𝑖 = 1 : 𝑁,𝑑 = 1 : 𝐷 , means the 𝑖-th instance type and the
𝑑-th index SPS, and𝑦𝑖𝑘 , 𝑖 = 1 : 𝑁,𝑘 = 1 : 𝐾 , means the 𝑖-th instance
type and 𝑘-th index SPS. Train dataset is defined as follows.

D ≜ {(𝑥𝑖𝑑 → 𝑦𝑖𝑘 ) | (𝑥𝑖𝑑 , 𝑦𝑖𝑘 ) ∈ {1, 2, 3}} (1)

Each value of 𝑥𝑖𝑑 and 𝑦𝑖𝑘 takes one of {1, 2, 3} that is a possible
SPS value. In defining the training dataset, we need to decide how
many previous measured datasets to use, which is𝐷 , and howmany
future dataset to predict, which is 𝐾 . Our thorough empirical analy-
sis reveals that the selection of 𝐷 and 𝐾 does not have much impact
to the overall prediction accuracy (Figure 11 in the Appendix).

4.2 Accuracy of Availability Dataset Predictor
Using the train dataset, D, in equation 1, we apply various classi-
fication models of the Linear Regressor (LR) [37], Random Forest
(RF) classifier [8], XGBoost [10], Support Vector Classifier (SVC) [5],
Prophet [47], and ARIMA [7]. Table 1 compares the F1 score for
different prediction models to assess both precision and recall [41].
In the train, we used the SPS dataset from 16 July 2023 to 31 July
2023. For testing, we used the dataset from 1 August 2023 to 6
August 2023 which is exclusive to the training dataset period. We
divide the test dataset in half and use the previous half-period as
the model input. Of the next half-data set, we vary the prediction
period, 𝑘 , to the next 3, 6, 12, 24, 48, 72 hours, and they are shown in
the columns. Amongmanymodels, the XGBoost shows the best per-
formance regardless of the future prediction window size, although
the difference is marginal.

We can observe that the prediction performance is very similar
although the prediction model is different. Our investigation reveals
that in many cases the SPS values stay constant over time, which
makes it easy to predict. To compare the prediction performance
when the SPS value changes quite abruptly, Table 2 presents the
prediction performance categorized by the frequency of the change
in the SPS value. We classified instance types whose standard devi-
ation of the SPS value during the test data period was larger than
0.1, 0.25, 0.5, and 0.75. Of the total test data cases, 14%, 11%, 6% and
2% of the cases. respectively, belong to each category.

We can observe that, for the SPS that changes more frequently
(Over 0.75), XGBoost showed the best prediction performance. To
use the SPS prediction, it is important to understand the operation
overhead, such as the train and the inference time. We compared
the operation overhead in Table 4 in the Appendix. Considering

Standard Deviation
Over 0.1 Over 0.25 Over 0.5 Over 0.75

LR 0.73 0.70 0.62 0.54
RF 0.75 0.72 0.63 0.54

XGBoost 0.77 0.74 0.66 0.57
SVC 0.76 0.73 0.64 0.53

Prophet 0.75 0.72 0.64 0.53
ARIMA 0.74 0.71 0.63 0.53

Table 2: F1-score of SPS prediction for different degree of
value change
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0.0025
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0.0075
0.0100
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Figure 5: The importance of features when building a SPS
prediction model. The smaller X-axis value implies more
recent dataset from the train time

prediction performance and operation overhead, using the XGBoost
model makes the most sense.

To analyze the impact of the recency of the SPS values when
building a prediction model, Figure 5 presents the importance of
the feature extracted from a built XGBoost model. The vertical
axis shows the importance of each feature, and the horizontal axis
shows the index of the time-series feature. The lower index number
implies a more recent data set when training a model. For example,
assuming that a model is built at an arbitrary time 𝑡 , the index of
1 means the SPS value observed in the time unit 𝑡 − 1. As shown
in the figure, the recent SPS values dominate a model, where SPS
values until 24 hours taking 79% of total importance.

5 EVALUATION
This section evaluates the effectiveness of a heuristic to improve
the reliability of the spot instance through a detailed analysis of
spot instance interruption events. More specifically, we would like
to answer the following research questions.

RQ-1 For spot instances offered by the major public vendors,
which vendor provides the most reliability with respect to the
interruption?

RQ-2 Of many spot instance datasets, which dataset is most
correlated with spot instance interruption?

RQ-3 Can the prediction of the SPS value lower the chance of
spot instance interruption?
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Figure 6: Kaplan-Meier Estimator to compare the probability of spot instance survival rate with respect to different spot
instance datasets and Vendor

5.1 Spot Instance Interrupt Analysis
We first compare the interruption behaviors of multiple cloud ven-
dors (RQ-1). To examine interruption events, we performed real-
world experiments by running a spot instance until an interruption
event occurred. We choose 875 different types of instances in AWS,
Azure, and GCP located worldwide. When choosing arbitrary in-
stance types, we try to distribute evenly for different values in the
cost savings, interruption ratio, and instant availability datasets.
The experiments had been conducted for 24 hours for each type of
instance in the period between July 2022 and March 2023. When
an interruption occurs, we mark the event and continue to request
the spot instance until it is fulfilled again. We share the source code
for conducting interruption experiments as an artifact [28].

To quantitatively compare the survival rate of the spot instances,
the probability that a spot instance remains running, we applied the
Kaplan-Meier Estimator [24] which is a non-parametric statistic
to estimate the survival rate of a lifetime dataset. It is generally
used in the hospital environment to measure the fraction of people
who live after treatment or the length of time that people remain
unemployed after losing a job [35]. Considering the general usage,
applying it to model spot instance survival probability is well suited.
Kaplan-Meier Estimator is calculated as follows.

𝑆 (𝑡) =
∏

𝑖: 𝑡𝑖≤𝑡

(
𝑛𝑖 − 𝑑𝑖
𝑛𝑖

)
The survivor function (𝑆 (𝑡)) at time 𝑡 is defined as the probability

that a life (spot instance running time) is longer than 𝑡 . 𝑛𝑖 is the
number of survived (running spot instances) until time 𝑡𝑖 , and 𝑑𝑖
means the number of deaths (spot instance interruption) at time 𝑡𝑖 .

Figure 6 compares the Kaplan-Meier estimator distribution grouped
by different spot instance dataset and vendor. In the figure, the hor-
izontal axis shows the spot instance running time (survival time),
and the vertical axis shows the distribution.

Figure 6a compares 𝑆 (𝑡) of AWS, GCP, and Azure. The yellow-
solid, green-dashed, and blue-dotted lines present the distribution of
AWS, GCP, and Azure respectively. From the figure, it is evident that
AWS shows the lowest survival rate, followed by GCP and Azure.
The median running time of the AWS spot instance is 1.2 hours, and
more than half of the GCP and Azure instance did not experience

interruption during the 24 hour experiments. The shortest 𝑃90 run
time of AWS, GCP, and Azure is 0.02, 0.5, and 5 hours, respectively.

Next, we evaluate the correlation of various spot instance datasets
and the interruption events (RQ-2). Figure 6b compares the survival
time distribution with respect to different interrupt-free scores, and
Figure 6c compares with respect to the SPS scores. Both figures
are the AWS experiment results grouped by different spot instance
datasets. For both datasets, the higher score implies greater avail-
ability. The scores of Low (1.0), Medium (2.0), and High (3.0) are
presented with solid, dashed, and dotted lines, respectively. From
both figures, we can observe that higher score values show a higher
survival rate than lower score values. We omit the savings figures,
and the interrupt-free score for Azure because they do not show a
noticeable pattern as the AWS interrupt-free score and SPS do.

Figure 7 compares the time elapsed between the start of a spot
instance interruption and the node becoming fulfilled again. The
shorter time implies that a spot instance becomes available again
shortly after an interruption occurs, which means a higher avail-
ability. The sub-figures group instances according to the spot in-
stance dataset. In each figure, the yellow-solid, blue-dotted, and
green-dashed lines indicate the results of AWS, Azure, and GCP,
respectively. In each line, we mark a symbol of △ for High and ▽
for Low value after categorization.

The cost savings ratio dataset (Figure 7a) does not show a notice-
able difference among High and Low values for all AWS, Azure, and
GCP. GCP and Azure show a similar latency distribution, while that
of AWS shows much less availability than the others. Regarding
the interrupt-free score (Figure 7b), Azure did not show a different
pattern between High and Low values, but AWS shows a distinct
pattern that follows the advertised score. The high interrupt-free
score of AWS spot instances shows a faster fulfillment time after
an interruption. The instant availability data (Figure 7c) show a no-
ticeable difference between High and Low that the higher SPS value
shows lower latency for fulfillment after an interruption (higher
availability) and follows the advertised score characteristic well.

5.2 Effectiveness of SPS Prediction
We have discovered that the instant availability dataset of the spot
instance provided by the AWS SPS dataset is beneficial to model
the interruption events and availability of the spot instance. To
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Figure 7: A CDF of latency until a request becomes fulfilled for AWS, Azure, and GCP spot instances categorized by different
dataset values of High (△) and Low (▽). The lower latency implies the higher availability.
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Figure 8: Distribution of spot instance availability when us-
ing only the current SPS value and predicted values

go one step further and answer RQ-3 of whether predicting fu-
ture SPS value can help increase the probability of predicting the
interruption of the spot instance, we compare the distribution of
the interruption of the spot instance with different predicted SPS
values in Figure 8. The vertical axis shows the distribution, and the

horizontal axis presents the spot instance running (survival) time.
Figure 8a presents the life time of spot instances whose SPS value
is high (3.0) when a spot instance request is made. The SPS value
can change over the course of the experiment, and we categorize
the predicted SPS values in a bin size of 0.5. The dotted line shows
when the average predicted SPS value is 3.0, which means that
the SPS value is expected to remain constant at the high value.
A dashed-dotted line indicates when the expected SPS average is
higher than 2.5 but lower than 3.0. The other lines are expressed
in a similar way. From the figure, we can discover that, despite
the same initial high SPS value of 3.0, ignorant of the future SPS
value can significantly affect the reliability of a spot instance. For
example, the median survival time for the spot instance when the
predicted SPS is high is 22 hours, but that of the lower predicted
SPS value is 16 hours.

Figure 8b shows the survival time of spot instances whose initial
SPS value is low (1.0). Similarly, the SPS value can fluctuate, and
we show the running time by grouping instances by the predicted
SPS values. The solid line presents when the SPS value is expected
to remain low at 1.0, and it shows a very short run time. Otherwise,
even if the initial SPS value is low, instances with higher expected
SPS values show a longer survival time. For example, the median
running time of the spot instance whose SPS is expected to be
consistently at 1.0 is 0 hours, while that of the SPS expected to be
between 2.0 and 2.5 turns out to be about 8 hours. This finding is
especially helpful when a user has a limited list of spot instance
types and their initial SPS is low, such as GPU instances. In that
case, the prediction of SPS can greatly improve the reliability of the
spot instance, although its current SPS is low.

When choosing spot instances, referencing predicted SPS values
can greatly improve the reliability. This approach is unique com-
pared to the previous work, which directly attempted to predict
spot instance interruption events. The work carried out by Azure
researchers [54] used internal spot instance interruption logs and
showed excellent prediction performance. However, the dataset
is not publicly available and limits public research. The work pre-
sented in SpotLake [31] tried to model the interruption events of the
spot instance using a random forest [8] using logs from interruption
experiments, but shows poor prediction performance due to the
lack of sufficient training data that require prohibitive experimental
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cost. This proposed approach can improve spot instance reliability
with a low budget without requiring internal information.

In summary, we can answer the research questions raised before
as follows.

RQ-1 For spot instances offered by major public vendors, which
vendor provides the most reliability with respect to interruption?
Answer : The Azure spot instance showed the most reliability
followed by GCP and AWS.

RQ-2 Of many spot instance datasets, which dataset is most
correlated with spot instance interruption? Answer : The AWS
SPS dataset shows the highest correlations with the spot instance
interruption. The cost savings and interrupt-free score do not show
a high correlation as AWS SPS does.

RQ-3 Can the prediction of the SPS value reduce the chance of
spot instance interruption? Answer : Yes, the prediction of SPS
dataset can definitely help to increase the spot instance reliability.
When the initial SPS value is high, selecting an instance whose pre-
dicted value is consistently high can increase the expected runtime
of the spot instance by 63.2%. Even when the initial SPS value is
low, selecting spot instances with higher expected SPS value can
increase the expected spot instance running time by 168%

Overall, the spot instance datasets offered by Azure and GCP are
not really useful when choosing appropriate instance types. How-
ever, the reliability of Azure and GCP spot instances is relatively
high, and users may experience a lower interruption regardless of
instance selection. The spot instance offered by AWS shows the
most interruptions. However, the spot instance datasets provided by
AWS reflect spot instance interruptions very well. Thus, different
from Azure and GCP, when using a spot instance from AWS, users
should be more cautious to choose appropriate instance type for
reliable execution.

6 RELATEDWORK
Modeling and Using Spot Instance Dataset : From the inception
of the spot instance, the spot price dataset is widely used and ana-
lyzed to enhance the reliability of the spot instances. There were
attempts to characterize the price dataset of the spot instance and re-
late the analysis to the interruption of the spot instance to decrease
the chances of interruption [13, 21, 33, 36, 40, 40, 51, 52]. Using
the spot price and the analysis result, Ali-Eldin et. al. proposed to
deploy a web-server [2], Son et. al. proposed DeepSpotCloud [30]
for DNN training tasks using GPU spot instances located globally.
SeeSpotRun [11] for Hadoop [16] MapReduce [12], Flint [43] and
Tr-Spark [53] for Apache Spark [58] are proposed for big data pro-
cessing. Online web services [2, 19], batch processing jobs [34, 45],
and parallel processing of independent tasks [49] are proposed
while mitigating the straggler effect due to transient servers [4]. The
aforementioned work relied on the spot price dataset, and the work
becomes obsolete due to the spot instance operation change [6, 20].
The findings in this paper provide a new opportunity to improve
the reliability of spot instances by predicting instant availability
without relying on the spot price dataset.

Spot Instance Price Prediction : We showed that predicting
the spot instance instant availability dataset is predictable using a
machine learning classifier model with decent performance. Before
this work, there are attempts to predict the spot price value to

predict future cost savings and interruption events. Khandelwal et.
al [25] used the Random Forest, Fabra et. al [15] used a deep neural
net model, and Alkharif et. al [3] used various statistical methods
of time series analysis for price prediction. Due to the change in
the spot price operation policy [6, 20], the previous work becomes
obsolete, and new approaches, as in this paper, should be provided.

Analyzing Spot Instance Interruption : Compared to the
analysis of the spot price dataset, the analysis and experiments
of spot instance interruption and correlating it with the spot in-
stance dataset were not carried out much. Pham et. al. [39] and
Lee et. al. [31] conducted spot instance interruption experiments
for only AWS instances to analyze the interruption pattern. For
Azure, Yang et. al. [54] proposed using an instance interruption
prediction model based on a Transformer model by using the inter-
nally available interruption trace of Azure. For GCP, Haugerud et.
al. [18] and Kadupitiya et. al. [23] conducted interruption tests to
model behavior. To the best of the authors’ knowledge, this paper
is the first work to conduct spot instance interruption experiments
for three major vendors of AWS, Azure, and GCP. Comparing the
behavior of spot instances can greatly help users to choose the most
appropriate spot instances in a multi-cloud environment that is
considered to be widely adopted [9, 38, 56].

7 CONCLUSION
Cloud spot instances provide significant cost savings when using
cloud resources with the risk of sudden instance termination. To
help users better use the spot instance, public service vendors pro-
vide diverse spot instance datasets, such as price, interruption ratio
in the past period, and instant availability information. Despite the
diverse publicly available information, they are neither widely used
nor analyzed except for the spot price dataset which is irrelevant to
the spot instance interruption and reliability. To handle this issue,
this paper thoroughly analyzes characteristics of various spot in-
stance datasets and proposes a model to predict instant availability
dataset to enhance reliability. To uncover the relationship of the pub-
licly available dataset and the spot instance interruption behavior,
we performed real-world experiments for spot instance interrup-
tions in the AWS, Azure, and GCP cloud. We discovered that the
Azure spot instance shows the highest reliability, followed by GCP
and AWS. Though AWS showed the worst reliability, we discovered
that the instant availability dataset offered by AWS can be helpful
in predicting interruption events in the near future, which was not
possible by using datasets offered by Azure and GCP. Finally, using
the proposed instant availability score prediction, we showed that
the median running time of spot instances can improve by 63.2% for
initial high-score instances and by 168% for initial low-score spot
instances. We believe that our study will enable users to use cloud
resources more efficiently, ensuring reduced costs and increased
reliability, thereby optimizing their overall system performance.
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Figure 9: SPS score during the observation period categorized by different criteria. SPS values show a noticeable distribution
and pattern differences.

AWS Azure
Region HH(%) LL(%) Ratio HH Region HH(%) LL(%) Ratio HH
ap-ne-1 48.8 7.1 0.87 ja-e 63.9 2.3 0.96
ap-ne-2 46.1 9.9 0.82 kr-c 75.2 0 1
ap-s-1 24.2 14.7 0.62 in-c 68.7 2.2 0.96
ap-se-1 8.9 17.1 0.34 ap-se 68.9 0.4 0.99
ca-c-1 48.0 7.7 0.86 ca-c 64.3 1.1 0.98
eu-c-1 22.2 20.8 0.51 uk-s 74.2 1.9 0.97
eu-n-1 48.8 3.3 0.93 eu-n 65.6 1.7 0.97
eu-w-3 43.1 9.9 0.81 fr-c 70.9 1.8 0.97
sa-e-1 36.4 14.0 0.72 us-c 69.7 2.6 0.96
us-e-1 2.2 50.6 0.04 us-e 35.1 16.1 0.68
us-w-2 2.4 24.3 0.09 us-e-2 32.5 15.8 0.67

Table 3: The percentage of Savings and Interrupt-free score
combination for different regions.

A ANALYSIS OF SPOT INSTANCE DATASET
The spot instance instant availability dataset, AWS SPS, provides
crucial information on the reliability of spot instances. To further
analyze the characteristics of the dataset, Figure 9 presents the tem-
poral changes of the mean SPS value grouped by different criteria.
In the sub-figures, the vertical axis shows the SPS value, and the
horizontal axis presents the timestamp. Figure 9a presents the SPS
value pattern with respect to the number of CPU cores. The number
of cores is grouped into ones with more than 128 cores (solid black
line) while decreasing the core numbers in half. From the figure, it
is evident that the SPS score is inversely proportional to the number
of CPU cores. For example, the mean SPS of when there are more
than 128 cores is 𝑥𝑦𝑧, while that of one or two CPU cores is 𝑥𝑦𝑧.
This result is consistent with the spot instance interrupt analysis
experiments conducted for GCP [22, 55]. Figure 9b shows the mean
SPS values for selected representative regions. We can discover
the daily pattern for most regions with different scores. This result
necessitates proper choice of regions to use spot instance reliably.
Figure 9c groups the types of instances by categories. We can ob-
serve that the SPS in the accelerated computing category, which
is presented with a solid line with star markers, shows lower val-
ues. It is an understandable situation that the recent popularity of

deep neural networks, which requires significant computing power
in the accelerated computing category, caused such a lack of idle
resource, which is also presented by DeepSpotCloud [30].

We further analyze the data distribution of the interruption ratio
and cost savings. To make the analysis beneficial to understanding
the relation of two events, we focus on comparing the proportion
of preferred to non-preferred cases. We first investigate the cases
of high cost savings and high interrupt-free score, which a user
prefers, and mark it as HH. In another case, both the cost savings
and interrupt-free scores are low, a case that an user wants to avoid,
and we mark it as LL. We mark savings larger than 70% as High. For
the interrupt-free score, 2.5 and 3.0 are High, and 1.0 and 1.5 are
Low. Table 3 shows the percentage of each case separated by AWS
and Azure regions. Note that GCP does not provide an interruption
ratio dataset. The Ratio HH column shows the ratio of HH, which
is calculated as 𝐻𝐻

𝐻𝐻+𝐿𝐿 . The higher ratio means that more cases
belong to the HH category, which is ideal. In AWS, the regions of
Japan, Canada, and Stockholm show a high ratio. Meanwhile, the
most of the regions in US show a lower ratio, especially US West 2
(Oregon) and US East 1 (N. Virginia), which are the biggest region
in US. This result reflects the high resource demand in some regions.
Comparing Azure and AWS, we can observe that Azure shows a
much higher Ratio HH, which reflects more reliable spot instance
operation with higher cost savings. This result coincides with the
findings in 1a and 1b. One interesting observation of Azure is that
the US east region shows a comparatively low ratio value.

B FURTHER ANALYSIS OF THE SPOT
INSTANCE AVAILABILITY EXPERIMENTS

Figure 10 presents a distribution of spot instance running time after
fulfillment categorized by different dataset. The vertical axis shows
the distribution, and the horizontal axis shows a running time with-
out interruption in log-scale. The larger x-axis value (to the right-
side) implies more availability. Different sub-figures group instances
to different criteria; cost savings ratio (Figure 10a), interrupt-free
score (Figure 10b), and instant availability (SPS) score (Figure 10c).
In each figure, the yellow-solid, blue-dotted, and green-dashed lines
indicate the results of AWS, Azure, and GCP, respectively. In each
line, we mark a symbol of △ for High and ▽ for Low value after
categorization.
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Figure 10: A CDF of time until an interruption event happens for AWS, Azure, and GCP spot instances categorized by different
dataset values of High (△) and Low (▽). A graph in the right side means higher availability.

Model Train Time Inference Time
LR 46 0.7
RF 75 0.9

XGBoost 806 1.2
SVC 626 15

Prophet 0.05 0.002
ARIMA 302 0.17

Transformer 2384 4.7
Table 4: Train and Inference Time (seconds) of a SPS predic-
tion model
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Figure 11: Heatmap of F1-score for XGBoost for modeling
with respect to different input and prediction output time
window

From the figure, we can observe that the cost savings ratio (Fig-
ure 10a) does not show a noticeable pattern between High and Low
value for the running time of the spot instance. This observation
concurs with the previous work that the price of the spot instance is
not a good indicator of the reliability of the spot instance [6, 20]. We
can also observe that Azure shows the longest running time than
the other vendors followed by GCP and AWS. For the interrupt-
free score (Figure 10b), the AWS spot instance shows a noticeable
pattern that the higher interruption-free score is more reliable than

the lower one. However, the Azure does not show such a pattern.
For the instant availability dataset (Figure 10c), which is provided
by AWS only (SPS), instances with high scores show much more
reliability than lower ones. On average, spot instances with the
score of 3 run for 4.7 hours, while that of the score 1 runs only for
1.8 hours.

C ANALYSIS OF SPS PREDICTION MODEL
We demonstrated that AWS SPS dataset is predictable with decent
accuracy and recall. In SPS prediction, we applied multiple models
and present the overhead of training and inference in Table 4. When
measuring the time, we used the SPS dataset gathered between July
24th. and July 31st. 2023. For inference, we used the dataset from
August 1st. to August. 3rd. For the time measurement, we used a
dataset from a single instance type for comparison. We can observe
a quite difference in training time due to the model’s complex-
ity, especially the Transformer [50]. We tried various Transformer
optimization heuristics. However, considering the huge training
overhead and lower prediction quality, it does not seem to be an
appropriate approach to deal with time-series dataset, which coin-
cides with the result presented by Elsayed et. al. [14]. The Prophet
shows a very short training time but shows a lower prediction
quality compared to XGBoost, especially when the data changes
abruptly, as presented in Table 2. The train time difference is owing
to the fact that XGBoost and other machine learning classifiers
build separate models for each different output, which is the num-
ber of output windows, 432. Meanwhile, Prophet builds a single
model based on statistics of train dataset, and train time did not get
impacts from the output time window size. Considering that the
train and inference can occur off-line, we argue that using XGBoost
for a SPS value prediction service is appropriate.

Figure 11 shows the heatmap of F1-score of a SPS prediction
model built using XGBoost with respect to different input time
window (the horizontal axis) and the different output time window
(the vertical axis) presented in hours. In the figure, lighter region
implies higher F1-score. As we can see from the figure, regardless of
the input and output time window, the F1-score shows consistently
high scores except when predicting further future (72𝐻 ) using only
recent values (3𝐻 ).

All datasets and source codes for the figures in this article are
available as an artifact [27].
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