
Performance Prediction of Sparse Matrix Multiplication
on a Distributed BigData Processing Environment

Jueon Park
Dept. of Computer Science

Kookmin University
Seoul, South Korea

jueon@kookmin.ac.kr

Kyungyong Lee
Dept. of Computer Science

Kookmin University
Seoul, South Korea

leeky@kookmin.ac.kr

Abstract—Sparse matrix multiplication (SPMM) is widely
used for various machine learning algorithms. With advance-
ments in big-data processing, the importance of distributed
SPMM processing becomes important for handling large-scale
datasets. We conducted thorough experiments using various
distributed SPMM implementations and discovered consider-
able performance variations for distinct datasets and scenarios.
To provide an optimal SPMM execution environment, we
propose features that represent SPMM task characteristics.
Using these features, we propose building a tree-based non-
linear gradient boosting (GB) regressor model that presents
superb prediction accuracy across diverse distributed SPMM
implementations and datasets.

I. INTRODUCTION

Large-scale datasets from real-world applications can be
represented using a graph format that expresses relationships
among nodes. An edge between two nodes means that the
nodes have a relation, and an edge can have a weight value
based on the datasets. For example, friends connections
and topic subscriptions in a social network, product-review
ratings in an e-commerce site, user-movie ratings in a
movie-streaming service, and hyperlinks from a source to a
destination website can be expressed using a graph. To apply
several types of machine learning algorithms to extract valu-
able information from graph-structured datasets, the dataset
should be expressed in a computer-friendly format. Many
data mining algorithms require input datasets to be repre-
sented in a sparse matrix format. For example, the power
method implementation of the PageRank algorithm [10] and
nonnegative matrix factorization (NMF) [8], which is widely
used for various recommendation systems requires input
datasets to be represented in a matrix format.

Processing various types of big data requires considerable
computing power, and general-purpose distributed comput-
ing platforms, such as Apache Hadoop [4] and Spark [17],
provide a set of application programming interfaces (APIs)
that abstract the complex mechanisms of maintaining fault-
tolerance in a distributed environment, task scheduling with
heterogeneous resources, and guaranteeing scalability as
demand changes. Using the high-level APIs of Apache

Spark, MLLib [9] provides an implementation of various
machine learning algorithms conducted on a shared-nothing
distributed computing environment. It also provides various
matrix operations on a distributed environment [1] that
include matrix multiplication and factorization, which are
core kernels of many machine learning algorithms.

Optimization of matrix multiplication in a HPC environ-
ment has well been studied in the literature. Researchers
have focused on minimizing communication overhead using
a highly optimized MPI library or carefully designing algo-
rithms on multi-core shared memory machines [16], [11],
[2]. Despite the importance of an SPMM as a core kernel
of many data mining algorithms, the characteristics of the
operation in a shared-nothing distributed environment are
not well studied, especially for Apache Spark, which is one
of the most popular big-data processing engines.

Apache Spark MLLib supports various sparse matrix
operations in a distributed computing environment. To in-
vestigate the characteristics of SPMM using Spark MLLib,
we have conducted experiments with various datasets and
distributed implementations; the results are shown in Fig-
ure 2. From the experimental results, we observe that the
performance of SPMM varies significantly as the datasets
and implementation change.

Despite the variability in SPMM performance, barely any
guidance exists to optimally operate using Apache Spark. To
help users better understand the characteristics of operation
and guide optimal implementation, we propose a model to
predict the latency of arbitrary SPMM tasks with different
numbers of rows and columns, different density, and distinct
multiplication implementation methods. We first propose a
set of features that represent the characteristics of input
matrices. Using the features, we built several models and
found that applying a GB regressor [5] with Bayesian
optimization [13] to determine the optimal hyper-parameters
achieves the best prediction accuracy.

In summary, the main contributions of this paper are as
follows.

• We uncovered the performance variability of a dis-
tributed SPMM operation on Apache Spark and the lack



of general guidance regarding performance characteris-
tics.

• We propose features that can represent the distributed
SPMM well using Spark MLLib.

• We present the practicality of building a model to
predict distributed SPMM performance for diverse sce-
narios.

This paper is organized as follows. Section II discusses
various algorithms to implement SPMM with Apache Spark
and presents the performance variability. Section III pro-
poses a model to predict SPMM performance, and Sec-
tion IV thoroughly evaluates the proposed model. Section V
concludes this paper with future work.

II. DISTRIBUTED SPARSE MATRIX MULTIPLICATION

To store and access a sparse matrix using Apache Spark,
MLLib [9] provides distributed sparse matrix representa-
tions: indexed-row and block matrices. Both approaches use
resilient distributed dataset [17] as the underlying mech-
anism to store sparse matrices while guaranteeing fault-
resilience. In the indexed-row representation, an input matrix
is stored in a row-wise manner so that a row is stored as
a sparse vector locally in the distributed servers. To store
blocks in a column-major order, we transpose an input
matrix and store it in the indexed-row format. In the block
representation, an entire sparse matrix is partitioned into
either the row and/or column direction. After partitioning,
a block of the sparse matrix is stored in compressed sparse
column (CSC) format.

Using the distributed representations of sparse matrices,
we highlight four distributed SPMM implementations in
Figure 1. For the brevity of the descriptions, we define A,
B, and C, as the left, right, and the result matrix, which
is C = A ×B. We use i and j to denote an arbitrary row
index of A and a column index of B. Moreover, we use k to
denote an arbitrary column index of A and row index of B.
The capital letters I , K, and J denote the corresponding
dimension size. In each matrix, we use subscripts with
a parentheses to denote the row and column indices. For
example, A(i,k) indicates an element in the i-th row and
k-th column of a matrix A. The ∗ notation in the row or
column index of a matrix denote an entire row or column.
For example, A(i,∗) indicates the i-th row of a matrix A.

Figure 1a illustrates an SPMM implementation of the
outer sparse product. In the method, A is partitioned into the
column (A∗,k), and B is partitioned into the row (Bk,∗). A
GroupBy operation is applied for k. In each grouped result,
an outer product is conducted (A∗,k⊗Bk,∗) that results in an
intermediate output matrix of size I × J . During the outer
product operation, each vector remains in a sparse status.
Element-wise summation is performed to derive the final
result, C.

Figure 1b explains an SPMM implementation that uses
an inner sparse product. In the method, Ci,j is generated by

(a) Outer sparse product

(b) Inner sparse product

(c) Indexed-Row multiply

(d) Block multiply

Figure 1: Various SPMM implementation with distributed
sparse matrices



(a) Orkut dataset (b) DBLP dataset (c) Youtube dataset

Figure 2: Sparse matrix multiplication using Apache Spark with different matrix distribution mechanisms

conducting an inner product of a row from the left matrix
and a column from the right matrix, Ci,j = Ai,∗·B∗,j . In the
inner-product operation, each vector is kept in a sparse state.
Stitching scalar values from the inner-product operations
results in the final output matrix, C.

Figure 1c displays an SPMV implementation using the
indexed-row data structure provided by Spark [15]. The mul-
tiplication method is natively supported by Apache Spark.
In the method, the right matrix, B, should exist locally in a
Spark driver. A driver broadcasts the matrix to all workers
after converting it to a dense matrix. In each worker node
with multiple executors, the inner product between a sparse
vector (Ai,∗) and a dense vector (B∗,j) calculates Ci,j.

Figure 1d represents an SPMM method using a distributed
block-partitioning mechanism that is natively supported by
Apache Spark [15]. In the block partitioning scheme, a
matrix is divided into both the row and column directions.
To calculate a block of the output matrix, the corresponding
entire rows from the left matrix and columns from the right
matrix are fetched to a node responsible for calculation.
During multiplication, the left matrix is kept in a sparse
CSC format, whereas the right matrix is converted into a
dense matrix format.

Among the four methods, Spark does not natively sup-
port the outer product and inner sparse product. Thus, we
implement these ourselves.

To understand the performance of different SPMM mech-
anisms presented in Figure 1, we conducted a performance
evaluation of different heuristics. In the experiments, we
performed SPMMs with a left sparse matrix and a right
matrix with various densities. To generate a realistic SPMM
workload, we used the multiple-source breadth-first search
(BFS) algorithm [6], which is explained in Figure 3. The
algorithm repeatedly performs an SPMM operation with a
left matrix built from an input sparse dataset and a right
matrix indicating the source to destination mappings. A right
matrix for a multiply operation is first defined by setting a

source ID node to 1 and the others to 0 in each column. The
result of the left and right matrix multiplications indicates
the path from the source to the destination. During iterative
multiplication, a result matrix becomes the right matrix for
the next iteration, indicating the path connection in multiple
hops. Because a right matrix is updated in every iteration,
the density changes in every iteration, and it provides various
multiplication scenarios by operating in multiple iterations.

To evaluate the performance of the four different dis-
tributed implementations of SPMM in Figure 1, we used
Orkut (Figure 2a), DBLP (Figure 2b), and YouTube (Fig-
ure 2c) datasets as left matrices. For the right matrix, we
set a random source element to 1, and the right matrix
is updated in every iteration using a result matrix of a
previous SPMM. To investigate the characteristics from
various multiplication scenarios, we set the density of the
right matrix to 0.001, 0.01, 0.05, and 0.1. Because the right
matrix becomes denser in different ratios for a distinct left
matrix dataset, we choose cases in which the right matrix
density becomes the closest the configured densities. In each
figure, the horizontal axis expresses the different distributed
SPMM implementations. Each SPMM method has four bars
that represent the performance of the distinct right matrix
densities. The vertical axis indicates the normalized latency
for the best performance of the same right matrix density
with different distributed SPMM mechanisms.

To represent the relative performance difference of the
SPMM method for different right matrix densities, we group
bars of different densities with the same SPMM method.
For example, the outer sparse in Figure 2a, exhibits the
best performance compared to other SPMM methods when
the right matrix density is 0.001, but the performance
degrades significantly as the density of the right matrices
increases. The right matrix density becomes 0.1, and outer
sparse implementation has about seven times more latency
than the best case (indexed-row). From the figures, we can



Figure 3: Multi Source BFS algorithm as a workload to
evaluate various distributed SPMMs

observe that the performance difference among different
SPMM implementations, right matrix densities, and left
matrix characteristics are significant. We cannot determine a
globally optimal SPMM implementation, which can result in
considerable performance variability for various data mining
jobs implemented on Apache Spark.

III. MODELING DISTRIBUTED SPARSE MM
PERFORMANCE

The performance of distributed SPMM implementations
differs significantly as the input datasets vary, and it is
critical to predict the estimated latency of an arbitrary
SPMM task because it is a core kernel of many machine
learning jobs. To predict the performance of various SPMM
tasks, we propose features to represent characteristics of
various SPMM workloads. Using the proposed features, we
suggest building a prediction model using a GB-regressor [5]
that accurately represents non-linear interactions among fea-
tures. Furthermore, we apply Bayesian optimization [13] to
determine the optimal hyper-parameters.

In building a prediction model, determining a representa-
tive set of features is the first step. To represent a sparse
matrix, we use the dimension of left and right matrices
and name them as lr, lc, and rc, which is the number of
left matrix rows, left matrix columns, and the right matrix
columns, respectively. Because the target workload of the
proposed model is a sparse matrix, the density of a matrix
is an important factor that must be considered. We call it
l− density and r− density for left matrix density and the
right matrix density, respectively.

In addition to the left and right densities, we also add
the number of nonzero (nnz) elements of the left and right
matrices, l−nnz and r−nnz. The nnz of a matrix is already
reflected in the density feature because it is calculated by
dividing the nnz (l − nnz for a left matrix) by the total

Figure 4: Proposed architecture

number of elements (lr× lc for a left matrix). Ideally, such
a relationship should be captured while building a model.
Deep neural-net [12] is good at finding hidden relationships
from a very large-scale input datasets. However, it requires
a significant number of input datasets to detect hidden
characteristics, and it is impractical to generate numerous
input datasets for SPMM tasks. Thus, we add the nnz and
density feature manually.

We add lr × rc to represent the dimension of an output
matrix from an SPMM task. Because we target sparse input
datasets, the size and number of non-zero elements from
an output matrix are difficult to estimate before doing the
actual computation. We expect that the combination of l −
nnz, r − nnz, and lr × rc can estimate the overhead of a
node that is responsible for storing an output matrix. We add
l−nnz+r−nnz to represent the shuffling overhead for all
nodes during computation. To consider the actual number of
product computations in the sparse matrix format, we add
l − nnz × r − nnz.

Referencing the performance estimation of distributed
dense matrix multiplication using Spark [7], [14], we add
lr × lc timesrc and lr × lc + lc × rc, which represent the
total number of product operations and the shuffle overhead,
respectively. To build a unified model that is applicable for
the four methods of an SPMM operation, we add a method
feature that is categorical.

We build our prediction model using the GB regressor
with the features that are mentioned above. The GB regressor
produces a prediction model in the form of an ensemble of
weak prediction models, typically decision trees. It produces
a classifier based on the accuracy of the classifier generated
on the previous step and ensembles those classifiers to
generate a more accurate final model.

In modeling using the GB regressor, various hyper-
parameters are used, such as learning rate, max depth,
max leaf nodes, and so on. It is difficult to find the best
hyper-parameter combination in modeling. Although exper-
imenting with all possible combinations of hyper-parameters
provides the best hyper-parameters, it takes a long time. The
Bayesian optimization helps to determine the optimal hyper-
parameters with extra minimal overhead.



Figure 5: Prediction accuracy of a model built with GB
regressor

Figure 6: Prediction accuracy of a model built with NNLS

IV. EVALUATION

To present the applicability of predicting the performance
of SPMM operations with various sparse matrices and dis-
tributed implementation, we conducted experiments covering
thorough scenarios. To represent various input datasets, we
used Orkut, DBLP, and Youtube graph datasets from SNAP1.
The Orkut dataset contains 3,072,441 nodes, 117,185,083
edges, and 234,370,166 nnz. The DBLP dataset has 317,080
nodes, 1,049,866 edges, and 2,099,732 nnz. The Youtube
dataset contains 1,134,890 nodes, 2,987,624 edges, and
5,975,248 nnz. Finally, we could collect 12 distinct SPMM
scenarios. For the generated SPMM cases, some implemen-
tations could not complete the given workloads due to the
memory limitation. Using the input dataset as a left matrix,
we conducted multi-source BFS algorithms in multiple itera-
tions using Apache Spark. The experiments were conducted
on AWS Elastic MapReduce version 5.27.0 with one master
and four worker nodes of R4.2xlarge instances.

1http://snap.stanford.edu/data/index.html

We first evaluated the prediction accuracy of a GB re-
gressor model with the proposed feature sets. We performed
K-fold cross validation 10 times dividing the training and
test datasets into an 8:2 ratio. We measured the prediction
accuracy by using R2 and the mean absolute percentage
error (MAPE) metric. Figure 5 displays the R2 value (higher
is better) in the primary vertical axis whose values are
represented in the bar, and the MAPE value (lower is better)
is shown in the secondary vertical axis whose values are
represented as star marks. The horizontal axis reveals the
distributed SPMM implementations. The first four values
indicate the prediction accuracy of a model built from
training datasets generated from each method explained in
Section II exclusively. Other than these, we create a model
that uses training datasets generated from four methods and
built a single model (All).

We observe that the models built from exclusive datasets
exhibit better prediction accuracy than the unified model.
However, the unified All method with the worst performance
demonstrates accurate results with R2 equal to 0.94 and
a MAPE of about 11%. The best prediction accuracy is
achieved with the Block implementation for both R2 and
the MAPE metric.

To present superb prediction accuracy for a model built
with a GB regressor algorithm, we built another model using
the nonnegative least square (NNLS) algorithm, whose result
is presented in Figure 6. The overall prediction accuracy pat-
tern is very similar to that presented with the GB regressor
algorithm. However, the degree of accuracy is significantly
lower. For instance, the R2 value of the All method is only
0.5, and MAPE is over 100%. From the result, we conclude
non-linear interaction exists among the suggested features
for various SPMM tasks.

Using a GB regressor model, we accurately modeled the
response time of distributed SPMM tasks with the proposed
features when they are executed using Apache Spark. To
understand which features make considerable contributions
during modeling, we calculated the feature importance while
building a model. Figure 7 indicates the four most important
features for various distributed SPMM implementations.
Each figure reveals the relative importance of each feature,
and the importance is calculated by counting the number
of times a feature is selected during the decision tree build
process [3]. In most cases, the right matrix characteristics
are more important because the target application generates
more diverse right matrices. Other than the right matrix
characteristics, the shuffle overhead (l − nnz + r − nnz)
and computation overhead (l − nnz × r − nnz) influence
modeling. Although we added important features for dis-
tributed dense matrix multiplication, which were presented
in [14], [7], the features do not show a noticeable influence,

which indicates the drastic difference in the characteristics
of dense and SPMM.



(a) All methods (b) Outer sparse (c) Inner sparse (d) Indexed-Row (e) Block

Figure 7: The most important 4 features for each methods and all methods aggregated

V. CONCLUSION AND FUTURE WORK

This work presents a tree-based non-linear GB regressor
model to predict the performance of distributed SPMM tasks
on Apache Spark. After summarizing the SPMM imple-
mentations in a distributed environment, we demonstrated
performance variability for diverse SPMM implementations
and input datasets that necessitates a performance predictor
for optimal performance. We proposed feature sets to build
a model and demonstrated superb prediction performance.

The performance of the proposed model of distinct SPMM
algorithms is better than that of the unified model built for
all implementations. Building separate models for distinct
implementations requires a substantial number of experi-
ments to generate training datasets, and we are actively
working on improving the performance of the unified model.
We are also actively working on building a model in a
cloud computing environment that provides various instance
types. In such an environment, controlling the experimental
scenario to decrease experimental cost is crucial, and we are
investigating opportunities in that direction.

ACKNOWLEDGEMENT

This work is supported by the National Research Foun-
dation of Korea (NRF) Grant funded by the Korean Gov-
ernment (MSIP) (No. NRF-2015R1A5A7037615), the ICT
R&D program of IITP (2017-0-00396), and Research Cred-
its provided by AWS.

REFERENCES

[1] R. Bosagh Zadeh, X. Meng et al., “Matrix computations and
optimization in apache spark,” ser. KDD ’16. ACM, 2016,
pp. 31–38.

[2] J. Choi, J. J. Dongarra et al., “Scalapack: a scalable linear
algebra library for distributed memory concurrent comput-
ers,” in [Proceedings 1992] The Fourth Symposium on the
Frontiers of Massively Parallel Computation, 1992, pp. 120–
127.

[3] J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to
boosted regression trees,” Journal of Animal Ecology, vol. 77,
no. 4, pp. 802–813, 2008.

[4] A. S. Foundation, “Apache hadoop,” 2004. [Online].
Available: http://hadoop.apache.org/

[5] J. H. Friedman, “Greedy function approximation: A
gradient boosting machine.” Ann. Statist., vol. 29,
no. 5, pp. 1189–1232, 10 2001. [Online]. Available:
https://doi.org/10.1214/aos/1013203451

[6] J. Kepner and J. Gilbert, Graph Algorithms in the Language of
Linear Algebra, J. Kepner and J. Gilbert, Eds. Society for In-
dustrial and Applied Mathematics, 2011. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9780898719918

[7] J. Kim, M. Son, and K. Lee, “Mpec: Distributed matrix
multiplication performance modeling on a scale-out cloud
environment for data mining jobs,” IEEE Transactions on
Cloud Computing, pp. 1–1, 2019.

[8] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in In NIPS. MIT Press, 2000, pp.
556–562.

[9] X. Meng, J. Bradley et al., “Mllib: Machine learning in
apache spark,” J. Mach. Learn. Res., vol. 17, no. 1, p.
1235â1241, Jan. 2016.

[10] L. Page, S. Brin et al., “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab,
Technical Report 1999-66, November 1999, previous
number = SIDL-WP-1999-0120. [Online]. Available:
http://ilpubs.stanford.edu:8090/422/

[11] M. M. A. Patwary, N. R. Satish et al., “Parallel efficient sparse
matrix-matrix multiplication on multicore platforms,” in High
Performance Computing, J. M. Kunkel and T. Ludwig, Eds.
Cham: Springer International Publishing, 2015, pp. 48–57.

[12] O. Russakovsky, J. Deng et al., “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[13] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Proceedings
of the 25th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’12. USA: Curran
Associates Inc., 2012, pp. 2951–2959. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2999325.2999464

[14] M. Son and K. Lee, “Distributed matrix multi-
plication performance estimator for machine learning
jobs in cloud computing,” in 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD),
vol. 00, Jul 2018, pp. 638–645. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00088

[15] A. Spark, “Apache spark mllib distributed matrix computa-
tion,” https://goo.gl/Vnii2M, 2017, [Online; accessed 20-Nov-
2017].

[16] R. A. van de Geijn and J. Watts, “Summa: Scalable universal
matrix multiplication algorithm,” Austin, TX, USA, Tech.
Rep., 1995.

[17] M. Zaharia, M. Chowdhury et al., “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Presented as part of the 9th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI 12). San Jose, CA: USENIX, 2012, pp. 15–28.


