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Abstract Serverless computing and a function execu-

tion model, Function-as-a-Service (FaaS), are currently

receiving considerable attention from both academia

and industry. One of the reasons for the success of

serverless computing is its straightforward interface that

abstracts complex internals of cloud computing resource

usage and configurations. However, this approach may

result in hiding too much information about how under-

lying cloud resources would work, entailing that users

cannot predict how their applications will perform, es-

pecially for IO-heavy ones. To address this issue, we

evaluate several aspects of network and disk IO per-

formance with realistic workloads using public FaaS

systems. Our analysis reveals that current public FaaS

systems do not provide appropriate levels of IO per-

formance differentiation, and the ability to isolate net-

work resource allocation during concurrent execution

is rarely offered by service providers. Based on the re-

sults presented in this paper, we insist that it must be

mandatory for network and disk IO resource perfor-

mance of FaaS to be more visible and predictable, as

is the case for memory and CPU, in order to expand

serverless computing applications to data-intensive ones.
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1 Introduction

Serverless computing is gaining popularity with the FaaS

execution model. Without incurring the overheads in-

volved in provisioning cloud instances and being able

to scale them as needed, FaaS systems allow system de-

velopers to focus on the implementation of core logic.

Many public cloud service vendors provide an FaaS ex-

ecution model with their own custom cloud services,

such as block storage, databases, messaging, and event

notification. One of the major benefits of the FaaS is

its straightforward interface, which allows users to se-

lect a minimal set of configurations. For example, the

Lambda service provided by AWS, the first public FaaS

provider, lets users set the maximum memory size for

function run-time, and the CPU quota is allocated pro-

portionally to the RAM size, as is the service charge.

Despite their popularity, many of the recent appli-

cations of FaaS execution models are limited to the or-

chestration of multiple cloud services or gateway func-

tions by invoking other proprietary cloud services or

custom functions for passing input and output argu-

ments. Bag-of-tasks type applications, which do not

impose dependencies among parallel jobs, are also a

good candidate for the FaaS model. Characteristics of

current prevalent FaaS applications are stateless, and

they require minimal interaction among function run-

times [1]. The hardware and instance configuration of

FaaS run-times reflect such characteristics: no direct

communication among function run-times support, no

deterministic scheduling support, and a small amount

of attached disk storage.

Using cloud computing resources for processing large-

scale datasets with well-designed parallel algorithms is

becoming the norm, but such big-data applications do

not fit well with the current FaaS execution model.
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Hellerstein et. al. [2] insist that data-intensive applica-

tions should be natively supported by the FaaS execu-

tion model, in order to widen the adoption of serverless

computing in many fields.

The high-level abstraction of the resource and billing

model of current FaaS hides considerable information

about underlying compute resources, meaning that users

are likely to be ignorant of how a given function will

perform. To address this issue, Wang et. al. [3] and Lee

et. al. [4] evaluated several public FaaS execution en-

vironments, and uncovered many issues regarding ser-

vice scalability, performance isolation, hardware het-

erogeneity, and the cold-start problem. Although this

work identified important attributes of various FaaS

environments, the evaluation mainly focused on CPU

and memory resources that are closely related and de-

pendent performance metrics in FaaS, barely covering

the performance characteristics of network and disk IO

resources; for network resource performance, they con-

ducted an experiment using the iperf3 system com-

mand to observe resource isolation characteristics by

invoking multiple functions on the same host. They con-

cluded that the aggregated network bandwidth does not

differ from that of various numbers of concurrent execu-

tions; hence, they did not identify any network resource

isolation mechanisms amongst function invocations. For

disk IO operation, they used the dd system command to

identify performance. However, we believe that the IO

performance in the FaaS runtime needs deeper investi-

gation, because it will become more important as the

serverless computing approach is broadened to data-

intensive applications.

In order to better understand the network and disk
IO performance of FaaS using container technology, we

performed thorough experiments that heavily utilize

disk and network resources with practical application

workloads. From the results of our experiments and sub-

sequent analyses, we made the following observations:

– I/O device micro-benchmarks that exclusively stress

specific hardware do not provide an accurate esti-

mate of realistic network and disk performance

– Quantitative evaluations reveal that the configura-

tion of memory allocation for functions makes a dif-

ference in network and disk IO performance, even

though they are not enforced by a service provider

– A response time and cost evaluation revealed that

allocating more resources to function run-time does

not always produce a proportional gain in perfor-

mance, and the cost can increase significantly

– Fine-grained measurement of IO overhead while run-

ning data-intensive applications on public FaaS re-

veals the consequence of not limiting IO devices,

which is unfavourable to function run-times with

larger RAM configurations.

We believe that the findings in this paper will be

valuable when building data-intensive applications in

FaaS environments, by providing insights into the im-

pact of the maximum memory size allocation to net-

work and disk IO performance. The comparison of net-

works from many concurrent download functions re-

veals that the end-to-end response time can be short-

ened with increased parallelism, but the total aggre-

gated download time across functions increases signifi-

cantly, resulting in increased bills for end users. Further-

more, we could observe that not limiting IO device per-

formance can adversely affect CPU performance espe-

cially when the RAM configuration is small. Although

the current FaaS execution model is popular because

of the abstraction of complex resource provisioning and

scheduling, users, when deploying data-intensive appli-

cations in an FaaS environment, should be conscious of

the impact of concurrent executions on a single host to

avoid unexpected performance.

The remainder of this paper is organized as follows.

Section 2 discusses related work. Section 3 describes de-

tails about serverless computing and function execution

environments. Section 4 presents thorough evaluation

of a function service regarding network and disk IO re-

source performance, and Section 6 concludes the paper

by proposing future work.

2 Related Work

Many cloud service vendors provide FaaS execution mod-
els, including Lambda by AWS, Functions by Azure,

and Cloud Functions by Google. In contrast to other

public cloud service providers, IBM open-sourced their

function service implementation, Openwhisk. OpenLambda [5]

is another open source implementation of FaaS. As a

container orchestration tool, Kubernetes [6] has been

adopted for many industry applications that are built

using a micro-service architecture. To further extend

the functionality of Kubernetes, many open-source server-

less platforms built on top of Kubernetes are being ac-

tively developed, including OpenFaaS, Kubeless, and

Knative. These applications have the potential to con-

tribute significantly to expanding the adoption of FaaS

in industry and academia, but they tend to show unpre-

dictable performance because of a high level of resource

abstraction.

Wang et. al. [3] and Lee et. al. [4] compared public

function execution environments. They focused mainly

on quantitative evaluation of concurrent function through-

put, service scalability, and the cold-start problem. Their
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evaluation mainly focused on CPU and memory re-

source performance, and did not cover network resources

as thoroughly as we do in this paper. As the FaaS exe-

cution environment focuses on data-heavy applications,

we believe that the impact of network and disk IO re-

sources becomes as important as CPU and memory.

Despite the popularity of FaaS, its applications are

currently quite limited to the orchestration of multiple

cloud services. To extend the scope of FaaS applica-

tions, Kim et. al. [7] proposed running data analysis

jobs on Flint using a serverless environment. Ishakian

et. al. [8] ran a deep neural network model inference

engine on an FaaS platform and compared its perfor-

mance with those of dedicated machines. Feng et. al. [9]

proposed an algorithm to run DNN training tasks us-

ing FaaS. Pywren [10] ran large-scale linear algebra and

machine learning jobs on AWS Lambda. Kim et. al. [11]

presented an algorithm to build an optimal cloud en-

vironment to execute matrix multiplication tasks, and

the proposed algorithm can be applied to a function

environment. Kim et. al. [12, 13] proposed a suite of

data-intensive FaaS workloads to expand the applica-

tion scenario of serverless computing. There is a recent

trend in the literature towards expanding FaaS appli-

cations to data-heavy jobs [2], and it has been demon-

strated that the performance impacts from network and

IO device resources can be significant.

There are attempts to overcome limitations of FaaS

to support diverse applications. Pocket [14] and Lo-

cus [15] proposed external ephemeral storage service

by using high performance key-value storage engines,

such as NVMe SSD or Redis. Crucial [16] proposed a

shared-state machine that acts as a global variable stor-

age service for Java run-time. Though the current FaaS

applications are limited to embarrassingly parallel ones,

with efforts from academia, we believe that FaaS will

gradually support data-intensive MapReduce [17] type

applications natively and that network and disk IO per-

formance will become crucial.

3 Function Execution Mechanism for Serverless

Computing

Initial public cloud computing services offered virtu-

alized instances, so that users could run an operating

system image based on needs. From the initial offer-

ing, cloud computing services developed in the direc-

tion of hiding the complexities of infrastructure provi-

sioning, operating system dependency, software instal-

lation, and automatic scaling as demands change. In

the context of resource abstraction, serverless comput-

ing provides several services freeing users from the bur-

den of server instance provisioning. For example, the

cloud
VM host

…
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Lambda functionuser

Amazon EC2

Automatic 
Provisioning

Amazon EC2

…

VM host
cgroup

Network (net_cls)
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container (memory : 256MB)
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Fig. 1: FaaS environment using container technology

Amazon API Gateway provides a public web endpoint

service, usually with HTTP protocol support, alleviat-

ing the burdens of instance provisioning and the instal-

lation of necessary software, such as Apache web server

or nginx. For database services without server provi-

sioning, AWS provides DynamoDB (key-value storage)

and Aurora (RDBMS), which are fully managed by the

service provider, allowing users to focus on core data

management tasks.

In order to decrease challenges of users for the setup

of computation environments, many cloud service ven-

dors provide a serverless function service. With this ser-

vice, a user implements the core functionality of an ap-

plication and registers it with the FaaS. For the invoca-

tion of registered functions, an event-based approach is

widely used. The sources of events are generally other

services provided by the vendor. For example, in the

Lambda FaaS of AWS, functions can be invoked when

an image file is uploaded to Amazon S3 to perform fur-

ther registered actions, such as changing permissions for

public access and file transcoding. With the abstraction

of instance provisioning, a service provider can optimize

resource utilization by packing as many functions as

possible in a single host. In order to achieve this goal,

the service provider uses container technology that has

relatively lower management overhead and start time

than virtualization [18].

In addition to the reduced overhead of server provi-

sioning, most FaaS vendors provide a simple memory-

based billing mechanism. In the function configuration

step of AWS Lambda and Google Cloud Function, users

have to decide upon the maximum memory size re-

quired by a function, and the service bill is calculated as

the registered memory size times the duration of func-

tion execution. Other resources are allocated in propor-

tion to the configured memory size. In contrast to a vir-

tualization technique that relies on a hypervisor for re-

source isolation among multiple tenants, container tech-

nology relies on cgroup, which provides per-resource

isolation. In cgroup, the parameter memory.limit in bytes

sets the maximum memory size that a container can
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use. There are many ways to control the maximum CPU

usage of a container: container-to-core binding, share

(priority)-based allocation, and absolute time alloca-

tion. When using absolute time allocation, cpu.cfs period us

specifies the period of time that the CPU quota is reallo-

cated. In combination with cpu.cfs period us, cpu.cfs quota us

sets the amount of CPU time that a container can use

during cpu.cfs period us. In an FaaS execution model,

CPU resources are allocated by setting the ratio of
cpu.cfs quota us
cpu.cfs period us to the ratio of configured memory size

and the host machine’s total memory size. For network

resource allocation, cgroup’s net prio subsystem allows

the setting of priorities among many containers and can

be used to differentiate network resource allocation. For

block IO device allocation, the blkio subsystem’s weight

option allows the user to set the relative importance of

a containers IO usage. With its container technology

and resource isolation mechanism, an FaaS vendor can

provide performance guarantees with a simple billing

mechanism. Based on the analysis of the FaaS vendors’

performance, [3, 4] determined that CPU and memory

resources are allocated proportionally to user payments,

but these authors did not produce an in-depth discus-

sion of network and disk IO resources allocation and

isolation. An FaaS working scenario is shown in Fig-

ure 1.

4 IO Performance Characteristics of FaaS

Prior work [3,4] has focused on evaluation and compar-

ison among many FaaS providers mainly on memory

allocation and the corresponding CPU performance. As

FaaS applications become more data-friendly, it ap-

pears that the impact from the IO performance be-

comes crucial for providing reliable and predictable per-

formance. In order to understand the impact of vari-

ous FaaS configurations to the disk and network per-

formance, we thoroughly investigate the performance

quantitatively with respect to memory allocation and

concurrent executions. We use FunctionBench [12] to

evaluate the IO performance of FaaS with realistic ap-

plications. The FunctionBench is composed of micro

and application benchmarks. The micro-benchmarks con-

sist of a few system commands that stress either CPU,

memory, disk, or network exclusively. The application

benchmarks contain many data-intensive scenarios, such

as image/video processing, text data featurization (tf-

idf) followed by sentiment analysis, DNN serving, and

MapReduce tasks [13]. The authors provide source codes

that are ready to be executed for public cloud services

AWS, Azure, and Google, and we use them without

modification.

4.1 Characteristics of Network Performance

To exclusively measure the performance of network re-

sources of FaaS, we used the iperf3 system call from the

FunctionBench [12] to measure available network band-

width. To use the iperf3 system command, we created

a large-enough dedicated server using an Amazon EC2

c4.8xlarge instance with the -s option of iperf3, as func-

tion run-times do not support a direct connection [2].

The Lambda function run-time works as a client where

the IP address and port of the server are passed as func-

tion arguments. Using the iperf3 command, we can let

a client (function run-time) work as either a data up-

loader (default option) or downloader (with -R option),

and we present the result in both cases when necessary.

To measure latency of data download and update, we

use Amazon S3 as a source and destination from the

Lambda run-time and utilize the Amazon Fine Food

Review text dataset1 with Python2.7 and the boto3 li-

brary. The different memory configuration of function

run-time limits the maximum file size to be loaded in

the memory, and we partition the dataset into chunks

with 10, 20, 50, 100, and 200MB. All AWS resources in

the experiments are deployed on N. Virginia region.

We present various metrics related to network per-

formance. The download time is the time taken by a sin-

gle function run-time to download a file. The response

time measures the end-to-end latency when download-

ing files in parallel from multiple function executions.

The large input dataset was partitioned into small chunks

so that parallel download was implementable. The ag-

gregated download time is the accumulated download

time from multiple function executions. Unlike the re-

sponse time, aggregated download time does not con-

sider function parallelism by adding up download time

from each container, and it determines billing for the

download service.

4.1.1 Impact of Memory Size Configuration

We first evaluated the network bandwidth available with

AWS Lambda with different memory size configurations

by using the iperf3 system command. In Figure 2, the

horizontal axis shows the memory size configured in

Lambda. The leftmost six bars show the available band-

width when a function run-time works as an uploader,

and the rightmost six bars represent the available band-

width when a function run-time works as a downloader,

with data obtained using the iperf3 -R option. Previ-

ous work [3] has investigated the bandwidth available

in a function execution environment in the upload case,

and their findings match the values given in Figure 2.

1 https://snap.stanford.edu/data/web-FineFoods.html
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Fig. 2: Network bandwidth evaluation with iperf3

From these experimental results, we can see that the

service provider does not provide different levels of net-

work quality based on the configured maximum mem-

ory size.

Evaluation with the iperf3 system command pro-

vides an easy way to investigate the network bandwidth

available for a function run-time, but it does not repre-

sent a realistic scenario for data applications that may

download or upload files from a shared block storage.

To understand the network performance of an FaaS un-

der a realistic scenario, we performed download and

upload experiments using blocks of data of different

sizes. Figure 3 shows the download (Figure 3a) and up-

load (Figure 3b) times of input files of different sizes

on a Lambda run-time with 1024MB of memory con-

figured. The primary vertical axis shows the response

time taken to process a chunk, and the secondary ver-

tical axis shows the network bandwidth consumed. The

file size does not have a noticeable impact on network

bandwidth use. We used a 10MB input chunk file size

in the following experiments, unless otherwise noted,

which is executable with the minimal memory configu-

ration (128MB).

To evaluate the impact of memory size when real

datasets are accessed from a function execution envi-

ronment, we measured the download time, upload time,

and the relationship between response time and cost

(Figure 4). Figure 4a shows the download time for each

function run-time when the total file size is 1 GB, di-

vided into 10MB chunks. Thus, the total number of

chunks to download is 100, equal to the total num-

ber of function executions required to process all of the

chunks. In the figure, we show the median value across

many invocations, in order to avoid effects of unavoid-

able long-tail latency in a cloud environment [19]. In

Figure 4a, the median download time decreases as the

functions allocated memory size increases. This obser-

vation contradicts the results from the iperf3 experi-

ment (Figure 2), which showed that function memory

allocation does not have an impact on the network

bandwidth performance. In addition, with respect to

the amount of available bandwidth, access to S3 services

from a function run-time exhibits much lower avail-

able bandwidth than the iperf3 tests; for 128MB of

configured memory for a function, iperf3 shows about

70MB/S, while the download from S3 shows 9.5MB/S.

Amongst many possible reasons, we believe that dif-

ferences in the experiment environment and scenarios

are likely to be the most significant reason for this dif-

ference. In the iperf3 experiment, we created a VPC in

which a function run-time and EC2 instance can talk to

each other via a fast local area network. However, access

to S3 from a function run-time might include routing

through the public Internet, even though the services

exist in the same AWS region. Another difference is

the execution environment: for the iperf3 experiment,

a system command is invoked, but download from S3

includes Python 2.7 with the boto3 library to actually

access the S3 service. We also believe that the iperf3

test involves lower memory usage and CPU utilization

than does using Python with the boto3 library, and

more intense resource usage of S3 downloads actually

degraded the network performance.

Figure 4b shows the per-function upload time (me-

dian value) and available bandwidth. Similar to the re-

sults shown in Figure 4a, the available upload band-

width increases as the allocated memory size increases,

and these findings are also contrary to the results shown

in Figure 2. From the experimental results presented in

Figures 4a, 4b, and 2, we can conclude that the widely-

used iperf3 benchmark does not accurately reflect the

network performance of function environments. Obvi-

ously, in an FaaS application, the chance of accessing

S3 is higher than using the iperf3 command. Thus, to

represent realistic data-intensive applications in a func-

tion environment evaluation, we have to consider use

of external data sources in order to better understand

the behavior of function execution environments. We

can also conclude that although the service provider

does not differentiate available network bandwidth of a

function run-time based on the allocated memory size,

the limited memory size and its proportional CPU us-

age quota to configured RAM size negatively affect the

network performance, and functions are likely to use

limited network bandwidth based on memory alloca-

tion.

AWS Lambda has a unique billing model that re-

flects the configured maximum memory size and run-

ning time of a function. To investigate the impact of

function memory configuration and cost to download

all the necessary input files in S3, we created a response

time and cost map (Figure 4c). In the experiments, each

function downloaded a chunk of size 10 MB. The to-

tal number of chunks downloaded was 100, and a new

function invocation happened for each chunk. In the

figure, the horizontal axis shows the configured mem-
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Fig. 3: Response time with different file size
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Fig. 4: The impact of function’s configured memory size to the network performance and cost

ory size; the primary vertical axis shows response time,

with values shown on the solid line with circle mark-

ers; and the secondary vertical axis shows the normal-

ized cost of running the entire set of functions, with

values shown on the dotted line with square markers.

The figure shows that the response time decreases as

the configured memory size increases. However, the nor-

malized cost increases with increasing memory size, be-

cause the increased memory does not result in linear im-

provement in the overall download response time. This

non-linearity becomes noticeable as the memory size

becomes much larger; for example, between 2048MB

and 3008MB. If we increase memory size from 128MB

to 256MB, the response time will be halved, with a

marginal cost increase. However, a memory increase

from 1024MB to 2048MB shortens the response time

by about 25%, but the cost increases by about 68%.

4.1.2 Impact of Concurrent Execution

We evaluated the impact of configured memory size on

overall network performance. We then investigated the

impact of concurrent execution of multiple functions on

a single host.

Concurrent Execution Evaluation Methodol-

ogy: In order to decide if function executions were con-

ducted on the same host, Wang et. al. [3] proposed a

function run-time and host-mapping mechanism. For

concurrent execution detection, we profiled self/cgroup

file of the proc file-system from a function run-time.

This file provides the VM identifier, which begins with

“sandbox-root”, and if the VM identifier is the same,

we assume that the function runs on the same host. We

ran the concurrency tests on AWS Lambda as much as

possible, but the function placement is not determinis-

tic, which entailed difficulties in result verification. To

overcome this issue, we created a function run-time en-

vironment using an AWS EC2 instance and Docker.

Among the EC2 instance types, we used c3-large, which

has two virtual cores and 3.75GB RAM, and is known

to be widely used for function run-time [3]. Docker pro-

vides an easy way to stop, start, and deploy containers.

Docker uses cgroup to isolate resources among contain-

ers. For memory allocation, we use –memory option to

specify the maximum amount of memory that a con-

tainer can use, and for CPU allocation, we used –cpus

to specify the amount of CPU time that a container can

use. The –cpus option uses cgroup’s cpu.cfs period us
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function execution measured with iperf3

and cpu.cfs quota us. After fixing the memory size, we

set the CPU ratio as proportional to the memory size.

For example, assuming the maximum memory size of

Lambda to be 3008MB and a host machine has two

virtual cores, the 128MB container will get a CPU al-

location of 0.085 (= 2.0 × 128
3008 ), and the 3008MB con-

tainer will get CPU allocation of 2.0. With this method,

we created a function execution environment using EC2

instances and performed experiment. It shows very sim-

ilar result pattern with the Lambda environment. With

the confirmation, we perform experiments on the EC2

and Docker environments when we cannot ensure that

many functions run on the same host.

Figure 5 shows the network bandwidth available

when multiple functions run on the same host. To max-

imize the number of concurrently running functions on

a host, we set the function memory size as 128MB, with

up to 26 functions executed on the same host. We used

the iperf3 scenario to measure the network bandwidth.

In the figure, the horizontal axis shows the number of

functions running concurrently on the same host: the

gray bar shows the median of available download band-

width amongst the functions whose value is marked on

the vertical axis; and the solid line with round mark-

ers shows the aggregated network bandwidth across all

concurrent functions. We do not show the upload band-

width test result, because it is very similar to the down-

load case. The Lambda service does not restrict net-

work resources based on the configured memory size,

as evidenced by the figure: as the number of concurrent

executions increases, the allocated bandwidth per ex-

ecution decreases, but the total aggregated bandwidth

remains constant.

Figure 6 shows the download times when multiple

functions are executed concurrently on the same host.

In Figure 6, the number of concurrent executions is

shown on the horizontal axis; the bars show the me-

dian download time required for multiple downloads to
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Fig. 7: response time and cost relation

fetch all 100 chunks, each 10MB in size, from Amazon

S3; and the numeric value on each bar shows the ag-

gregated network bandwidth across concurrent execu-

tions. When there is one function running on a host, we

can see that the download time is the shortest and the

aggregated bandwidth is the smallest. As concurrency

increases, the aggregated bandwidth increases, and the

download time also increases, due to network resource

contention on a same host.

Figure 7 shows the relationship between the response

times of multiple concurrent function executions and

cost with the number of concurrent executions shown

in the horizontal axis. The solid line with round mark-

ers shows the response time required to download all

100 chunks from S3 on the primary vertical axis. As the

number of concurrent executions increases, the response

time decreases, due to increased parallelism. The dot-

ted line with square markers shows the normalized cost

incurred with increased function concurrency, with val-

ues shown in the secondary vertical axis. Due to the in-

creased parallelism and network resource contention, we

can observe that having more functions does not always

result in improved cost efficiency. When a small number

of functions run concurrently, we can fetch necessary

files faster by paying proportionally more. In the case
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of extreme concurrency, such as 16 and 26 instances,

there is almost no response-time gain, but the cost in-

creases by about 20%. Unfortunately, in a function ex-

ecution environment, users do not have control over

where submitted functions will execute or how many

functions will execute on the same machine. From the

service providers perspective, it is evident that packing

as many functions as possible into a single host maxi-

mizes resource utilization. Thus, users have to be cau-

tious about increasing the number of parallel tasks, as a

specific strategy might not be optimal from a response

time and cost perspective.

4.2 Characteristics of File IO Performance

For most of current FaaS applications, using local stor-

age to store intermediate result is rare [2], and public

FaaS systems provide limited local storage for FaaS run-

times. However, data-intensive applications can gener-

ate huge intermediate outcomes that are generally tem-

porary stored on a local machine’s storage [20,21], and

the importance of disk IO performance will become sig-

nificant as big-data applications become deployed on

FaaS. To better understand the disk IO performance

of public FaaS systems for data-oriented applications,

we thoroughly investigate bandwidth and latency with

respect to the different configured memory sizes and

concurrencies.

Wang et. al. [3] lightly evaluated IO performance

of public FaaS using dd system command. However,

such a micro-benchmark cannot capture complex access

patterns of realistic data-oriented applications [22], and

in this study we use a suite of IO benchmarks provided

in the FunctionBench [13] that uses fread/fwrite in the

Python for both sequential and random access.

4.2.1 Impact of Memory Size Configuration

Figure 8 shows the response time and corresponding

bandwidth for processing 100MB files from AWS Lambda.

We conducted the same set of experiments with dif-

ferent file sizes, and it shows similar result. Figure 8a

shows the read performance, and Figure 8b shows the

write performance. In each figure, the gray bar and

white bar show the latency of sequential and random ac-

cess, respectively, in the primary vertical axis. The solid

line with round markers and dotted line with square

markers show the available bandwidth of sequential and

random access, respectively, in the secondary vertical

axis. For both read and write operations, it shows pro-

portional performance as we increase the memory allo-

cation. When a function run-time has over 2GB of mem-

ory allocated, the available disk IO bandwidth reaches

the maximum. When the allocated RAM is small, the

available disk bandwidth is very little. Thus, users should

be cautious in the function run-time configuration, even

if a function requires a small amount of memory, as it

can affect various aspect of resources.

Similar to the network resource, it is known that

public FaaS vendors do not differentiate disk IO re-

source allocation [3]. However, controlling available pro-

cessing capacity by limiting the RAM size and CPU

quota proportionally impacts the disk IO performance

indirectly, and users experience different disk IO per-

formance proportional to the allocated memory. In the

experiments, the evaluation of read happens right after

a write operation has finished. Thus, it is likely that

the read operation performance has benefit from us-

ing cached output from the write operation. In realistic

FaaS applications, this scenario is more likely than ac-

cessing files stored in disk without caching, because the

current FaaS execution model is stateless, and a ran-

domly assigned function run-time does not store a file

locally for function execution.

4.2.2 Impact of Concurrent Execution

The disk IO bandwidth can get impact from concur-

rent function executions on a same host. To quantita-

tively measure the impact, we perform the fread/fwrite

experiments on a controlled environment presented in

Section 4.1.2. The result of write operation is shown in

Figure 9. The horizontal axis shows the degree of con-

current executions on a host. The primary vertical axis

shows the latency to complete an operation of 100MB

input file, and the secondary vertical axis shows the cor-

responding available bandwidth. The gray bar indicates

the latency of sequential write, and the white bar shows

the latency of random write. The allocated memory size

of each function run-time is set as 128MB. The solid line

with round markers shows the bandwidth of sequential

write, and the dotted line with square markers shows

that of random write. In the experiment, we could not

complete random write operation within 1,000 seconds

when the number of concurrent executions is 26, and

the white bar and blue square marker in the setting are

missing. Both random and sequential write show degra-

dation due to the contention in a same host. Similar to

the network resources, users should be conscious about

the performance degradation of disk IO operation due

to the concurrent execution even if they cannot control

the function placement.
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Fig. 8: Response time and available bandwidth with different memory size (AWS Lambda)
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Fig. 9: Available disk bandwidth with concurrent func-

tion execution

5 IO Performance of Public FaaS

It is important to understand the impact from IO re-

sources to overall performance of data-intensive appli-

cations on public FaaS systems. To represent data an-

alytics scenarios, we ran MapReduce and Image Pro-

cessing applications from FunctionBench [12, 13] and

present compute, disk IO, and network time on AWS

Lambda and Google Cloud Function service while allo-

cating different memory sizes.

Image Processing : In the image processing work-

load, we assume that a batch of images (five images of

1MB each) is stored in a shared cloud object storage. A

FaaS function fetches images and apply several effects,

such as flip, rotate, blurring, contour filtering, resize,

and gray scale, using Python Pillow library. As there

are many effects applied for each image, the interme-

diate outcome should be stored in a local disk of each

function run-time. After all the tasks complete, the out-

comes stored in a local storage is uploaded to a shared

cloud object storage.
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Fig. 10: Image processing workloads with AWS Lambda

and Google Cloud Functions

Figure 10 shows the latency of Image Processing

with different memory size configured. The dark gray

bar shows AWS Lambda performance, and the white

bar shows Google cloud Functions. Missing bars mean

that the given experiment could not complete with the

configured memory size. We separate each bar into net-

work (upper left diagonal), disk IO (plain), and pro-

cessing (right upper diagonal) time that is shown in

the primary vertical axis. The secondary vertical axis

shows the ratio of network and disk IO to the total

completion time. As more resources are allocated, we

can see that both AWS and Google function show im-

proved performance. The ratio of network and disk IO

keep increasing as the configured memory size increases.

Current FaaS systems do not provide isolation of IO re-

sources proportional to the configured memory size [3],

and this experiment result implies that handling IO de-

vice overheads can negatively impact the CPU perfor-

mance especially when the memory configuration and

the corresponding CPU allocation are small. As more

memory and CPU quota are allocated to function run-

time, the improvement ratio of compute is much higher
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Fig. 11: MapReduce workloads with AWS Lambda and

Google Cloud Functions

than that of IO device. The larger memory and CPU

allocation result in enough capacity for processing the

compute job. However there is not much room for im-

provement for IO devices as they do not get restrictions

based on the configured memory size.

MapReduce : The MapReduce workload imple-

ments parallel execution of Map and Reduce primi-

tives [17] using FaaS run-times. The workload receives

the Wikipedia dataset in the programming language

category, and it counts the number of occurrences of a

programming language to infer the popularity. In the

experiment, we prepared 1GB of total input dataset

that is partitioned into ten blocks that are stored in a

shared cloud object storage service. Map tasks are in-

voked in parallel with the number of blocks. Each Map

task fetches an input block from a storage and count

the number of target programming language. The out-

puts from Map tasks are uploaded to a shared object

storage, and a Reduce task aggregates Map outputs.

Figure 11 shows the MapReduce experiment result.

The gray bars show the performance from AWS Lambda,

and white bars shows results from Google Cloud Func-

tions. In each bar, right upper diagonal parts express

the compute time, and the plain parts represent net-

work latency. The MapReduce task in the experiment

does not involve a local disk IO operation. Similar to the

Image Processing experiment result, larger memory size

results in shorter execution time, as it has more CPU

allocated. The IO ratio increases as more memory is al-

located to function run-times because no limitation of

IO resource results in better relative performance when

the configured memory size is small.

From the micro-benchmark experiment result that

relies on data download, upload, file write, and read,

we could observe that disk and IO performance im-

prove proportionally with the configured memory size,

though explicit IO resource limitation is not enforced.

However, with experiments of realistic applications, we

could uncover that the ratio of IO changes significantly

with different configured memory size; the impact from

IO device becomes noticeable as the configured mem-

ory and CPU allocation become large, and it eventually

hinders performance improvement even with a larger

memory and CPU allocation in FaaS. Because such be-

havior is not easily expectable from users’ perspective,

public FaaS providers should provide a mechanism to

let users control degree of IO resource allocation. The

needs will become more significant as data-intensive ap-

plications are deployed using FaaS systems.

6 Conclusions

In this paper, we presented the results of our investi-

gations into the performance of network and disk IO

resources in data-intensive FaaS applications. First, we

measured network performance by using the iperf3 micro-

benchmark and accessing a file shared on a block stor-

age service. We confirmed that the AWS Lambda ser-

vice does not differentiate the network resource alloca-

tion in proportion to configured memory size, but we

also found out that memory allocation strongly impacts

network performance in an indirect manner, because

the application involves large amounts of memory and

CPU usage. If multiple functions run on the same host,

network performance can degrade noticeably, and users

can be charged in an unpredictable manner. For disk

IO resources, we confirmed that the different memory

size configuration results in proportional random and

sequential read/write bandwidth. We envision the im-

portance of network and disk IO resource performance

isolation for realistic data-intensive FaaS applications

(e.g., MapReduce and image processing). Not provid-

ing different level of IO resource limitation results in

favorable IO performance with the lower memory size

configuration. Thus, as larger memory size is allocated

for a function run-time, the impact from IO device be-

comes more significant in a way that is not straight-

forward for end-users. To make the FaaS system widen

application scenarios to data-heavy ones, the service

level of IO resources should be more distinguishable as

users set FaaS run-times with a different degree of ex-

pectations.
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