
When Serverless Computing Meets Different Degrees of
Customization for DNN Inference

Moohyun Song
mhsong@kookmin.ac.kr

Computer Science. Kookmin Univ.
Seoul, South Korea

Yoonseo Hur
yoonseo@kookmin.ac.kr

Computer Science. Kookmin Univ.
Seoul, South Korea

Kyungyong Lee
leeky@kookmin.ac.kr

Computer Science. Kookmin Univ.
Seoul, South Korea

ABSTRACT
Serverless computing provides a method to develop application
services without the burden of run-time execution environment
management overhead. Since the initial offerings of serverless com-
puting using function-as-a-service (FaaS), other variants of execu-
tion environments have been proposed, such as a special-purpose
FaaS (SPF) for deep neural network (DNN) inference and a server-
less container service (SCS) for general web applications. This paper
qualitatively summarizes the characteristics of a general-purpose
FaaS (GPF), SPF, and SCS from the perspective of customizability
when setting up execution environments. To judge whether various
serverless computing environments can be feasible solutions for an
interactive DNN model inference application, we conduct extensive
experiments and conclude that there are rooms for performance
improvement serverless DNN inference, and allowing a custom
environment setup can make the serverless computing platform
for an interactive DNN application.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
serverless computing, dnn inference

ACM Reference Format:
Moohyun Song, Yoonseo Hur, and Kyungyong Lee. 2023. When Serverless
Computing Meets Different Degrees of Customization for DNN Inference.
In 9th International Workshop on Serverless Computing (WoSC ’23), December
11–15, 2023, Bologna, Italy. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3631295.3631400

1 INTRODUCTION
Cloud computing flexibly provides computing resources with on-
demand pricing. Users can easily build highly available application
services using diverse features, such as auto-scaling and load bal-
ancers, with cloud instances, which are referred to as infrastructure-
as-a-service (IaaS). Since the wide adoption of the initial IaaS model,
cloud computing services have been evolving in the direction of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WoSC ’23, December 11–15, 2023, Bologna, Italy
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0455-0/23/12. . . $15.00
https://doi.org/10.1145/3631295.3631400

hiding complex service operations so that users can focus on core
application development [14].

A higher degree of computing service abstraction becomes feasi-
ble with the development of diverse fully managed services, such
as database, messaging, object storage, and FaaS, allowing users to
implement custom source codes. Combining FaaS and fully man-
aged services delivers serverless computing, freeing users from
cumbersome resource operations [8]. Although the introduction of
serverless computing enables an innovative method of application
development in the cloud, some limitations can hinder the adoption
of serverless computing in a wide range of applications [5].

Current public serverless computing providers do not support
direct communications among function runtimes, and a function
runtime does not have permanent storage that mandates external
storage services [2, 12]. Users have a limited capability to set up
runtime environments due to memory size, and most other settings
are configured by service vendors [17]. Due to this limited capa-
bility, current serverless computing applications are restricted to a
simple back-end application server, parallel jobs, and cloud service
orchestrations [3, 5, 9, 10, 15]. To enhance serverless computing to a
broader set of applications, specially designed serverless computing
platforms have also been proposed (lithops [11] and Pywren [7]),
but they are not yet commercially available.

When developing serverless applications, the degree of cus-
tomization available to set up runtime environments can have a
significant influence on overall performance. As the serverless com-
puting eco-systems have evolved, various runtime platforms and
services have been introduced. The FaaS platform is most widely
used for current serverless application development, and the major
cloud vendors provide the service (AWS Lambda, Google, Microsoft
and IBM Cloud Functions). Recently, an SPF platform was also
provided. For instance, AWS released the SageMaker Serverless
Inference service which was specially designed for DNN inference
tasks. In addition, SCS to serve web applications has been provided.
GCP Cloud Run and AWS AppRunner services are typical examples.

Distinct serverless computing environments offer various cus-
tomization degrees for runtimes, but the performance differences
among different execution runtimes are not adequately explored yet.
To solve this issue, we compare the GPF, SPF, and SCS environments
for DNN inference, highlighting their unique applications. Our ob-
servations then guide the potential enhancements and challenges
for interactive DNN applications in serverless computing.

From our experimental results, we have derived a variety of
insights as follows.

• For most DNN models, SPF shows better performance than
GPF mainly due to its model serving engine provided by
default.

https://doi.org/10.1145/3631295.3631400
https://doi.org/10.1145/3631295.3631400
https://doi.org/10.1145/3631295.3631400


WoSC ’23, December 11–15, 2023, Bologna, Italy Moohyun Song, Yoonseo Hur, and Kyungyong Lee

• By comparing end-to-end response times, we identify the
API endpoint protocol has a higher impact to impact the
overall latency than the inference time.

• In SCS, using more instances offers superior performance
with lower cost than increasing CPU cores per instance.

• Cold-start can take over 10s of seconds to load a DNN model
and serving libraries, suggesting necessity for further re-
search.

2 SERVERLESS EXECUTION ENVIRONMENTS
The execution environment of serverless computing is managed and
offered by service providers. Initially, GPF was the only option to
develop serverless applications. As serverless application scenarios
become diverse, SPF and SCS have been introduced.

2.1 General Purpose FaaS
When using FaaS, although the detailed operating mechanism can
slightly differ, users first register the custom source code written in
various programming languages, such as Java, Python, JavaScript,
Go, Ruby, or C#. Registered functions operate on an event-driven ba-
sis, and users can register a variety of fully managed event sources.
In cases where a function must be invoked based on user requests,
an HTTP endpoint can be registered. During registration, users
must determine various configuration settings, such as the max-
imum memory size that the function runtime can use, and the
maximum time that the source code can execute. Representative
services include AWS Lambda, Azure Functions, IBM Cloud Func-
tions, and Google Cloud Functions.

2.2 Special Purpose FaaS for DNN Inference
SPF is a new type of FaaS designed for specific tasks. The recently
released AWS SageMaker Serverless Inference service is a represen-
tative example. The service offers a specially constructed inference
environment that allows the deployment and scaling of a machine
learning model serving environment on the AWS Lambda FaaS plat-
form. Figure 1 illustrates the internal operating mechanism of the
AWS SageMaker serverless inference service, which mainly consists
of an HTTP server and a container. The container encapsulates
the user-defined inference code, libraries, and other dependencies.
Upon initialization, the container loads the model, making it ready
to run when an inference request arrives. The HTTP server, acting
as a handler, manages incoming inference requests. It predomi-
nantly interfaces with the model via RESTful API, and API calls are
addressed by the HTTP server. When the HTTP server receives
an inference request, it passes the request via REST or gRPC to an
internal ML framework like TFServing that resides in the same con-
tainer, calls the model, and returns the results to the user. Besides
SageMaker serverless inference, other examples of SPF include IBM
Cloud Functions integrated with Watson services, which allow for
more effective execution of specific tasks such as natural language
processing and data analytic.

2.3 Serverless Container Service
SCS allow developers to deploy and run user’s container images
which can contain custom applications written in any desired lan-
guages using libraries without the burden of managing instances.

Figure 1: An example architecture of special-purpose FaaS
for DNN inference

Since the introduction of AWS Fargate as an SCS, FaaS-style con-
tainer services, such as GCP Cloud Run and AWS AppRunner, have
been offered. The critical difference between them is that Cloud
Run and AppRunner automatically scales up and down rapidly
as requests come in, which is similar to FaaS. In contrast Fargate
provides a method to set more general in options based on the
underlying container runtime service. Additionally, similar services
are provided by AWS App Runner, Azure Container Instances (ACI)
and IBM Cloud Code Engine.

3 CUSTOMIZING SERVERLESS COMPUTING
RUNTIME FOR DNN INFERENCE

Different serverless execution environments have unique configu-
rations when running DNN inference tasks, and we highlight them
qualitatively from the perspective of the runtime setup, scaling, and
API endpoint protocol. We characterize various services based on
the representative services in each category: AWS Lambda for GPF,
AWS SageMaker Serverless Inference for SPF, and GCP Cloud Run
for SCS.

3.1 Runtime Environment
In general, users register only the function when using FaaS. How-
ever, to support cases when the user code and library become
complex and large, the service supports a user’s custom container
image as a function run-time. For an SPF for DNN inference, a ser-
vice vendor provides an optimized model server platform, such as
TFServing, PyTorch, and MXNet, and users do not need to prepare
their own image. Users can add additional data processing steps
before and after an inference task. In the SCS, users must prepare
their own container images to execute. Furthermore, there is no
public endpoint handler implementation, and users must manually
provide an external API endpoint.

3.2 Runtime Configuration and Scaling Setup
To set up GPF and SPF runtime configurations, users generally spec-
ify the maximum memory size for runtime, and the CPU resources
are allocated by a service provider proportionally to the memory
size. Users have more flexibility when setting SCS for GCP Cloud
Run. One can determine the concurrency that specifies the number
of requests a single instance can manage simultaneously. Users
can also specify the minimum and maximum number of instances,
ensuring that a certain number of instances can run regardless of
the degree of requests. Additionally, users can define the number
of cores per instance, with a default value of one. The billing is
calculated by considering the configured values.



When Serverless Computing Meets Different Degrees of Customization for DNN Inference WoSC ’23, December 11–15, 2023, Bologna, Italy

Runtime Scaling
Configuration

Network
Protocol

General FaaS ★★ ★ ★

Special FaaS ★ ★ ★★

Serverless Container ★★★ ★★★ ★★★

Table 1: The relative degree of customization (the more stars,
the more customization possible) for different serverless ex-
ecution environments.

3.3 API Endpoint Protocol
When serving an interactive application, the HTTP REST API is
widely used to transmit and receive data. Further, REST is an ar-
chitectural style for designing networked applications over HTTP,
and its principal advantage is its remarkable flexibility. In inference
tasks, components of the REST API include the endpoint, which is a
URL for the client to access the server, the HTTP method indicating
the type of operation the client wishes to perform, and the request
and response.

As an alternative to the HTTP REST API, gRPC is a modern
and high-performance RPC framework, capable of running in any
environment. Furthermore, gRPC communicates over HTTP/2, sup-
porting multiple bidirectional streams on a single TCP connection.
It uses protocol buffers, a serialization structure, on top of the
HTTP/2 layer, which is lighter than JSON-based communication
and eliminates the need for separate parsing, thereby accelerating
communication. Thus, it offers the advantages of reduced commu-
nication time and the capability to handle increased traffic. The
current GPF supports only the REST API and not the gRPC. The
external endpoint of SPF supports only the REST API, but a user
can use gRPC for an internal communication mechanism. SCS sup-
ports both gRPC and HTTP REST for the external end-point which
provides the most capability.

Table 1 compares the degree of customization for various server-
less execution environments. The number of stars in each cell rep-
resents the degree of customizability. For all criteria, the SCS allows
users to have the most freedom when setting up the environment.

4 EVALUATION OF SERVERLESS EXECUTION
ENVIRONMENT

This section focuses on the quantitative evaluation of the influence
of customization on performance when serving a DNN model.

4.1 Experiment Setup and Workload
To evaluate the performance of the DNN model inference under
various serverless execution environments, we used AWS Lambda,
AWS SageMaker Serverless Inference and GCP CloudRun to repre-
sent GPF, SPF and SCS, respectively. For DNN inference workloads,
we used MobileNetV1 [13] and InceptionV3 [16] as image classi-
fication models, YOLOV5 [6] as an object detection model, and
BERT [4] for natural language processing. The input dataset for
MobileNetV1 is a three-channel image with a pixel size of 224×224,
and the InceptionV3 size is 299 × 299. For YOLOV5, we used the
COCO dataset(640×640). For BERT, we used the IMDbmovie review
dataset for sentiment classification.

Unless otherwise noted, to mitigate the effects of a cold-start,
we pre-warmed the execution environments by invoking inference

Model GFLOPS Model Input Size Output Size
Size gRPC REST gRPC REST

MobileNetV1 1.15 18 0.574 3.014 0.0040 0.0268
InceptionV3 11.5 97 1.023 5.524 0.0040 0.0265
YOLOV5 16.5 28 4.688 24.547 8.172 63.5932
BERT 13.39 428 0.006 0.004 0.0001 0.0001

Table 2: Model and input/output dataset sizes (MB)

Model
Inference Time (Sec.)

Python TFServing
Disabled Enabled Disabled Enabled

MobileNetV1 0.082 0.085 0.037 0.03
Inceptionv3 0.357 0.203 0.187 0.148
YOLOV5 0.331 0.255 0.345 0.276
BERT 1.830 1.294 1.827 1.246

Table 3: The impact of AVX512 instruction support for DNN
inference tasks. Disabled/Enabled means AVX512 feature
status.

tasks with the same configuration in each experiment. The GPF
received JSON requests containing input data via REST through
the Amazon API Gateway. Then these data were parsed by the
AWS Lambda Handler and subsequently passed to the TensorFlow
library [1] for inference. For the SPF, JSON containing protobuf
input data is sent via REST to the AWS SageMaker Inference End-
point. The handler parses the JSON and delivers the protobuf data to
TFServing using gRPC, residing in the same container. SCS used the
HTTP/2 endpoint in GCP Cloud Run, enabling direct connections
to the container via gRPC to transmit protobuf data. This container
was designed to receive requests through a Python-written gRPC
server, process protobuf data, and make predictions using Tensor-
Flow.

4.2 DNN Inference Performance
Figure 2 presents the inference time of warm-start cases with vari-
ous settings for distinct models that are shown in the sub-figures.
In the experiments, 40 concurrent requests were made. Each plat-
form was allocated 3GB of memory. For SCS, we set the minimum
number of instances as 40 to ensure a warm start and configured it
with 2 cores per instance, ensuring that it had the same core count
as GPF and SPF. The primary vertical axis presents the inference
time, and the values are presented using a box-whisker format.
The secondary vertical axis displays the cost incurred to process a
request. The cost was normalized to that of the minimum value in
each configuration and the values were marked using star markers.
The horizontal axis presents run-time environments for GPF, SPF,
and SCS in order.

Two image classification models (Figures 2a and 2b) display
similar patterns. SPF has the fastest inference time. A thorough
investigation reveals that the optimized model serving platform
provided by SPF contributed to improve inference time. The SPF
supports TFServing and other inference engines by default. For SCS
and GPF, users must manually install, optimize, and operate the
inference engine, which can be challenging and cumbersome.

For YOLOV5 (Figure 2c) and BERT (Figure 2d), the SCS performs
best. Our investigation reveals that the superior performance is
owing to the newer generation CPUs that is offered by GCP Cloud



WoSC ’23, December 11–15, 2023, Bologna, Italy Moohyun Song, Yoonseo Hur, and Kyungyong Lee

GPF SPF SCS
0.02

0.04

0.06

0.08

0.10

In
fe

re
nc

e 
Ti

m
e 

(S
ec

.)

1.0x

2.0x

3.0x

4.0x

Re
la

tiv
e 

Co
st

(a) MobileNetV1
GPF SPF SCS

0.12

0.14

0.16

0.18

0.20

0.22

In
fe

re
nc

e 
Ti

m
e 

(S
ec

.)

1.0x

1.5x

2.0x

2.5x

3.0x

Re
la

tiv
e 

Co
st

(b) InceptionV3
GPF SPF SCS

0.15

0.20

0.25

In
fe

re
nc

e 
Ti

m
e 

(S
ec

.)

2.0x

4.0x

6.0x

8.0x

10.0x

Re
la

tiv
e 

Co
st

(c) YOLOV5
GPF SPF SCS

0.8

1.0

1.2

In
fe

re
nc

e 
Ti

m
e 

(S
ec

.)

1.0x

1.1x

1.2x

1.3x

Re
la

tiv
e 

Co
st

(d) BERT
Figure 2: The inference time (primary Y-axis) to serve a single request and the corresponding cost (secondary Y-axis).

Run. The Skylake-SP Intel CPU, which is provided by SCS, sup-
ports AVX512 instructions with SIMD feature, and inference tasks
could gain a significant performance improvement over FaaS. To
see the impact of AVX512 instruction for inference, Table 3 shows
the impact of AVX512 on inference performance. To measure the
AVX512 impact in a controllable manner, we used a m5.large EC2
instance type which supports AVX512 and installed the same soft-
ware packages as in the serverless execution environments. To
test the performance without AVX512, we disabled the feature by
setting a CPUID. We can observe that the larger models have a
higher performance gain than smaller models. Regardless of the
size, models have default overhead other than the core computation
kernels, and smaller models (MobileNetV1 and InceptionV3) have
higher overhead ratio than larger models. For smaller models, the
performance gain from using TFServing over a custom implementa-
tion of inference service using Python web-server and TensorFlow
on the GPF is noticeable. However, for larger models, since the
computation takes most of the time, using TFServing did not result
in a significant performance gain. This result demonstrates that the
performance can be significantly influenced by the characteristics
of the hardware of the runtime, and specially-designed hardware
for inference keeps released. For example, recent Intel Xeon Max
CPU is equipped with High Bandwidth Memory with Advanced
Matrix Extensions (AMX) support to deliver much higher inference
performance than previous generation CPUs. Thus, in a serverless
environment where cloud vendors choose which hardware to pro-
vide, users should be able to understand the characteristics and
utilize its features.

Regarding cost, the SCS showed the most cost-efficiency, and
we expect that this is due to a higher degree of scaling policy
customization and lower cost of the service. Please note that though
we are running the minimum of 40machines for GCP Cloud Run to
measure warm-start time, only the processing time is included in
the cost calculation. For YOLOV5, we can observe that the inference
time of GPF is slightly faster than SPF, but the cost of GPF is higher
than SPF. The reason is related to the additional overhead due to the
extra data transfer overhead to and from the external object storage.
The measured inference time is time for the inference only, but the
overall cost is calculated by measuring a handler execution time
which includes additional data preparation time. The additional
network overhead is going to be further analyzed next.

Figure 3 compares the end-to-end response time to complete a
client’s inference task. The latency in Figure 2 includes the infer-
ence time only, and this figure includes network latency. One of the
primary factors that affects network latency is the API endpoint
protocol. The HTTP REST API is widely used, and the current AWS

YoloV5 BERT
0.5

1.0

1.5

2.0

2.5

En
d-

to
-E

nd
 T

im
e 

(S
ec

.)

REST gRPC

Figure 3: End-to-end response time for an inference task

Lambda (GPF) supports only the REST API, to which we had to
stick. AWS SageMaker serverless inference (SPF) has more flexi-
bility in choosing inference API endpoint protocol, and we used
gRPC to pass input and output for an inference task. The horizontal
axis presents two different models, YOLOV5 and BERT, which have
distinct input and output sizes from an inference task, as presented
in Table 2. In case of YOLOV5, which has a large input and output
dataset that are not supported by AWS FaaS endpoint, we used an
object storage service, S3, to pass the input/output to and from an
user. For each model, we present two cases, one using REST API
in a JSON format (GPF) and the other using gRPC in a Protobuf
format (SPF). The size of the input and output datasets is expressed
in Table 2. As revealed in the graph, the difference in response time
between the gRPC and REST API protocols becomes noticeable
when a large data set is required (YOLOV5). Compared to the in-
ference time difference between runtimes, which is in the range
of hundreds of milliseconds, the response time has a difference
of about 2 second. This is because gRPC transmits and receives
data through the Protobuf format, resulting in a smaller data size
compared to REST (JSON). This experimental result indicates that,
when managing a client’s inference task, the network latency can
take most of the response time, and the hardware performance of
the serverless computing environment might not be a dominant
factor when determining user experiences. From the context, a
more efficient API endpoint should be natively provided for GPF.

4.3 Scalability
The internal scaling mechanism is different for FaaS and SCS. Fig-
ure 5 illustrates the performance of FaaS as the configured memory
size changes. For comparison, we present two different models,
a small MobileNetV1 model (Figure 4a) and a large BERT model
(Figure 4b). The primary vertical axis indicates the inference time
and the secondary vertical axis displays the relative cost normalized
to when the configured memory size is 2GB. The horizontal axis



When Serverless Computing Meets Different Degrees of Customization for DNN Inference WoSC ’23, December 11–15, 2023, Bologna, Italy

2GB 4GB 6GB 8GB 10GB
0.07

0.08

0.09

0.10

In
fe

re
nc

e 
Ti

m
e 

(S
ec

.)

2.0x

4.0x

6.0x

Re
la

tiv
e 

Co
st

(a) MobileNetV1
2GB 4GB 6GB 8GB 10GB

0.5

1.0

1.5

In
fe

re
nc

e 
Ti

m
e 

(S
ec

.)

1.0x

1.1x

1.2x

1.3x

1.4x

Re
la

tiv
e 

Co
st

(b) BERT
Figure 4: Inference time as the configured memory size
changes for general purpose FaaS

presents the configured memory size of FaaS. Both models show im-
proving performance as the memory size increases, agreeing with
the advertisements by the service providers that the CPU capacity
is allocated proportionally to the configured memory size. However,
the performance improvement rate presents quite a difference. The
smaller model exhibits a minor performance improvement even
after adding more resources, resulting in a significant overall cost
increase. The larger BERT has a slight increase in cost as more
resources are allocated, but the performance improvement is also
noticeable. In FaaS, to provide more compute capacity as more
memory is allocated, the number of allocated CPU cores increases,
and if the application is not using the CPU cores in parallel, the
performance gain from allocating more memory can be negligible.
From this finding, we can conclude that the optimal FaaS environ-
ment configuration is crucial to obtaining the best performance and
cost efficiency, and it can considerably vary greatly when serving
various DNN models.

Figure 5 presents the performance variations of SCS as we change
the number of instances, the maximum number of requests that
an instance can process concurrently, and the number of assigned
CPU cores per instance change. We show a small and a large model
case, and other models show a similar pattern. The numbers on
the horizontal axis separated by the underscores represent the
value in order. In each configuration, we present the inference
time on the left and the end-to-end response time on the right.
The primary vertical axis displays the latency and the secondary
vertical axis reveals the relative cost normalized to the minimal
cost in each configuration. In addition, SCS has a rather complex
pricing mechanism, and the vendor does not provide per-request
billing. Therefore, we manually calculated the cost following the
billing criteria of the service.

In the experiments, we issued 48 requests at once and measured
the processing time while using 8GB of RAM. From the figures, we
can discover that the inference time does not make much difference
across different settings. However, the end-to-end latency and cost
have noticeable variations for different settings. When handling
requests, the number of instances and CPU cores determines the
cost. We discovered that packing more requests to a CPU core (the
case of 6_8_8 and 6_8_2) to save cost does not affect the inference
time, but the end-to-end response time becomes longer due to the
request queuing from the SCS engine. With the same degree of the
number of instances times the number of CPU cores, in the cases of
12_4_4 and 24_2_2, using a larger number of instances resulted in
better performance than allocating more CPU cores in an instance
with a lower cost. However, using more instances can negatively

6_8_8 6_8_2 12_4_4 12_4_2 24_2_2

0.25

0.50

0.75

1.00

La
te

nc
y 

(S
ec

.)

Inference Time End-to-End Time

1.0x

1.5x

2.0x

Re
la

tiv
e 

Co
st

(a) MobileNetV1

6_8_8 6_8_2 12_4_4 12_4_2 24_2_20

5

10

La
te

nc
y 

(S
ec

.)

1.0x

1.1x

1.2x

1.3x

Re
la

tiv
e 

Co
st

(b) BERT
Figure 5: Inference latency and response time as the config-
ured number of instances, concurrency, and the number of
CPU cores per instance changes for SCS

affect the performance when a cold-start occurs, which we discuss
next. Despite the general trend for such a performance change,
different models show slightly different patterns, and further re-
search should be conducted to suggest optimal configurations for
SCS runtimes.

When using serverless computing, users should be aware of the
cold-start. So far, the experimental result is based on the warm-
start cases, and Figure 6 shows the cold start time for the small and
large DNN models of MobileNetV1 and BERT, respectively. In the
experiments, we issued 40 requests at once and measured the cold
start time, and then calculated the average value. For each platform,
we configured it to use 3GB of RAM. The horizontal axis indicates
various serverless runtimes and the primary vertical axis displays
the latency. In some cases, multiple requests cannot be completed
when a cold-start occurs, and the number is presented on the sec-
ondary vertical axis with a star marker. The lower part of a stacked
bar represents the model loading time, and the upper part repre-
sents the time for loading containers and the necessary libraries
to serve a model. To generate a cold-start, we issue 40 concurrent
executions in newly created environments. As presented in the
figure, it takes significant time for loading a DNN model, container
image, and necessary libraries to serve an inference service. In the
case of GPF, the container load time is smaller than SPF and SCS
because a separate HTTP or gRPC server library is not included in
the image. In the BERT model, we can see that the container load
time has increased due to the large size of the model, as presented
in Table 2. Taking into account the inference latency and network
latency to serve a user’s request, the latency when cold-start oc-
curs increases to over 10 seconds, which can severely affect user
experiences. Furthermore, the SCS of GCP Cloud Run had many
request drops in the cold start, where about half of the requests
could not be completed. Despite the acceptable response time in
case of warm-start, the cold-start latency is far from supporting an
interactive DNN inference application, and further research and
engineering effort should be devoted to overcome this issue.

From the comprehensive experiments of serving the DNN model
using various serverless execution environments, we could uncov-
ered the following.



WoSC ’23, December 11–15, 2023, Bologna, Italy Moohyun Song, Yoonseo Hur, and Kyungyong Lee

GPF SPF SCS0.0

2.5

5.0

7.5

10.0

La
te

nc
y 

(S
ec

.)

Container + Library Load Time
Model Load Time

0

5

10

15

20

Re
qu

es
t D

ro
p 

Co
un

t
(a) MobileNetV1

GPF SPF SCS0

5

10

15

20

La
te

nc
y 

(S
ec

.)

0

10

20

30

Re
qu

es
t D

ro
p 

Co
un

t

(b) BERT
Figure 6: TheDNN inference latencywhen cold-start happens.
Compared to the warm-start time, the inference cold-start
latency is significant.

• An optimized inference service engine of an SPF can perform
better than a GPF with lower overhead

• The API network protocol has a significant influence on the
end-to-end response time to manage an inference tasks, and
more degree of freedom should be given to users for better
performance

• The complex configuration space of SCS offers a new re-
search challenge to provide an optimal environment for var-
ious DNN models.

• Despite the affordable inference time of DNN inference on a
warm-start, the cold-start latency (over tens of seconds) is not
affordable for an interactive application, and further research
specific to enhancing the DNN inference cold-start time is
necessary to widely adopt serverless computing widely for
DNN inference.

5 CONCLUSION AND FUTUREWORK
DIRECTION

Since the introduction of serverless computing and a GPF as a run-
time execution environment, other variants of serverless execution
environments have been developed. An SPF for DNN inference
provides an optimized environment for a workload, an SCS pro-
vides more flexibility in setting up the runtime. Using the various
setups, we thoroughly analyzed the inference performance of the
DNNmodel. The findings suggests the feasibility of using serverless
computing as a model serving framework, but it has limitations as
an interactive inference service. Further research and analysis can
be done in the direction of applying a special purpose library, such
as DeepSpeed Inference [18], on a serverless environment. Perfor-
mance analysis of a large model, such as Large Language Model,
on a constrained serverless environment should be conducted.

6 ACKNOWLEDGMENTS
This work is supported by the National Research Foundation of Ko-
rea (NRF) or Institute of Information & communications Technology
Planning & Evaluation (IITP) Grant funded by the Korean Govern-
ment (MSIT) : NRF-2020R1A2C1102544, NRF-2022R1A5A7000765,
and RS-2022-00144309 (SW StarLab).

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: a system for large-scale machine learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI 16). 265–283.

[2] Jaeghang Choi and Kyungyong Lee. 2020. Evaluation of Network File System as
a Shared Data Storage in Serverless Computing. In Proceedings of the 2020 Sixth
International Workshop on Serverless Computing (Delft, Netherlands) (WoSC’20).
Association for Computing Machinery, New York, NY, USA, 25–30. https://doi.
org/10.1145/3429880.3430096

[3] U. Choi and K. Lee. 2022. Dense or Sparse : Elastic SPMM Implementation for
Optimal Big-Data Processing. IEEE Transactions on Big Data 01 (aug 2022), 1–17.
https://doi.org/10.1109/TBDATA.2022.3199197

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL 2019.

[5] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2019. Serverless Com-
puting: One Step Forward, Two Steps Back. In 9th Biennial Conference on Innova-
tive Data Systems Research, CIDR 2019, Asilomar, CA, USA, January 13-16, 2019,
Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2019/papers/p119-
hellerstein-cidr19.pdf

[6] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012,
Yonghye Kwon, Kalen Michael, TaoXie, Jiacong Fang, imyhxy, Lorna, Zeng
Yifu, Colin Wong, Abhiram V, Diego Montes, Zhiqiang Wang, Cristi Fati, Je-
bastin Nadar, Laughing, UnglvKitDe, Victor Sonck, tkianai, yxNONG, Piotr
Skalski, Adam Hogan, Dhruv Nair, Max Strobel, and Mrinal Jain. 2022. ul-
tralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation. https:
//doi.org/10.5281/zenodo.7347926

[7] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the Cloud: Distributed Computing for the 99%. In Proceedings of
the 2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC ’17).
ACM, New York, NY, USA, 445–451. https://doi.org/10.1145/3127479.3128601

[8] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khan-
delwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.
2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.
CoRR abs/1902.03383 (2019). arXiv:1902.03383 http://arxiv.org/abs/1902.03383

[9] J. Kim and K. Lee. 2019. FunctionBench: A Suite of Workloads for Serverless
Cloud Function Service. In 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). https://doi.org/10.1109/CLOUD.2019.00091

[10] Jeongchul Kim and Kyungyong Lee. 2019. Practical Cloud Workloads for Server-
less FaaS. In Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz,
CA, USA) (SoCC ’19). ACM, New York, NY, USA.

[11] Josep Sampé, Marc Sánchez-Artigas, Gil Vernik, Ido Yehekzel, and Pedro García-
López. 2023. Outsourcing Data Processing Jobs With Lithops. IEEE Transactions
on Cloud Computing 11, 1 (2023), 1026–1037. https://doi.org/10.1109/TCC.2021.
3129000

[12] Marc Sánchez-Artigas and Germán T. Eizaguirre. 2022. A Seer Knows Best:
Optimized Object Storage Shuffling for Serverless Analytics. In Proceedings of
the 23rd ACM/IFIP International Middleware Conference (Quebec, QC, Canada)
(Middleware ’22). Association for Computing Machinery, New York, NY, USA,
148–160. https://doi.org/10.1145/3528535.3565241

[13] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4510–4520.
https://doi.org/10.1109/CVPR.2018.00474

[14] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,
Neeraja J Yadwadkar, Raluca Ada Popa, Joseph EGonzalez, Ion Stoica, andDavid A
Patterson. 2021. What serverless computing is and should become: The next
phase of cloud computing. Commun. ACM 64, 5 (2021), 76–84.

[15] M. Son and K. Lee. 2018. DistributedMatrixMultiplication Performance Estimator
for Machine Learning Jobs in Cloud Computing. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), Vol. 00. 638–645. https://doi.org/10.
1109/CLOUD.2018.00088

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2015. Rethinking the Inception Architecture for Computer Vision.
CoRR abs/1512.00567 (2015). arXiv:1512.00567 http://arxiv.org/abs/1512.00567

[17] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,
133–146. https://www.usenix.org/conference/atc18/presentation/wang-liang

[18] Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Ammar Ah-
mad Awan, Cheng Li, Du Li, Elton Zheng, Jeff Rasley, Shaden Smith,
Olatunji Ruwase, and Yuxiong He. 2022. DeepSpeed Inference: Enabling
Efficient Inference of Transformer Models at Unprecedented Scale. Techni-
cal Report MSR-TR-2022-21. Microsoft. https://www.microsoft.com/en-
us/research/publication/deepspeed-inference-enabling-efficient-inference-of-
transformer-models-at-unprecedented-scale/

https://doi.org/10.1145/3429880.3430096
https://doi.org/10.1145/3429880.3430096
https://doi.org/10.1109/TBDATA.2022.3199197
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.1145/3127479.3128601
https://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
https://doi.org/10.1109/CLOUD.2019.00091
https://doi.org/10.1109/TCC.2021.3129000
https://doi.org/10.1109/TCC.2021.3129000
https://doi.org/10.1145/3528535.3565241
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CLOUD.2018.00088
https://doi.org/10.1109/CLOUD.2018.00088
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.microsoft.com/en-us/research/publication/deepspeed-inference-enabling-efficient-inference-of-transformer-models-at-unprecedented-scale/
https://www.microsoft.com/en-us/research/publication/deepspeed-inference-enabling-efficient-inference-of-transformer-models-at-unprecedented-scale/
https://www.microsoft.com/en-us/research/publication/deepspeed-inference-enabling-efficient-inference-of-transformer-models-at-unprecedented-scale/

	Abstract
	1 Introduction
	2 Serverless Execution Environments
	2.1 General Purpose FaaS
	2.2 Special Purpose FaaS for DNN Inference
	2.3 Serverless Container Service

	3 Customizing Serverless Computing Runtime for DNN Inference
	3.1 Runtime Environment
	3.2 Runtime Configuration and Scaling Setup
	3.3 API Endpoint Protocol

	4 Evaluation of Serverless Execution Environment
	4.1 Experiment Setup and Workload
	4.2 DNN Inference Performance
	4.3 Scalability

	5 Conclusion and Future Work Direction
	6 Acknowledgments
	References

