
MapReduce on Opportunistic Resources Leveraging Resource Availability

Kyungyong Lee
ACIS Lab. Department of ECE

University of Florida
klee@acis.ufl.edu

Renato Figueiredo
ACIS Lab. Department of ECE

University of Florida
renato@acis.ufl.edu

Abstract—MapReduce is a popular large-scale parallel data
processing framework. In the context of MapReduce processing
on volunteer computing environments, it is important to
devise scheduling and data placement policies that account for
characteristics of opportunistic resources. This paper investi-
gates availability characteristics of opportunistic resources with
analyses based on log traces from the SETI@Home project.
Based on the analysis, the paper devises heuristics to leverage
the uptime of each available session to detect possibly long-
lasting resources. Our proposed session uptime-based resource
availability prediction approach shows a two-fold reduction in
the number of service disturbance compared to an availability-
rate based model. The paper paper investigates a heuristic that
differentiates stable nodes from unstable nodes while increasing
the chance of leveraging existing data blocks.

Keywords-Opportunistic computing, volunteer computing,
MapReduce, Hadoop, uptime

I. INTRODUCTION

Large-scale distributed systems have become mainstream
platforms to address challenges encountered in a wide va-
riety of compute- and data-intensive applications. Among
such platforms are Volunteer Computing (VC) systems —
desktop “Grids” that scavenge idle computing power of
Internet-connected commodity computers. Resources in VC
systems embrace characteristics of not only heterogeneous
configurations of hardware, software, and network, but also
wide geographical distribution, allowing them to potentially
reach very large number of candidate resources in the
world. However, given the characteristics of VC systems,
application scenarios are typically restricted to those that
map well to independent computation across large number
of resources, such as Bag-of-Tasks and parameter sweeping.

Google MapReduce [1] and Hadoop [2] are widely used
for large-scale data processing problems, such as counting
the URL access frequency and reverse Web-link graph anal-
ysis for Internet-scale graphs. They borrow the concept of
Map and Reduce from functional programming languages,
while enabling parallel execution of data processing jobs on
large-scale computing environments and freeing users from
job distributions and handling resource failures. Despite of
their popularity, Map/Reduce platforms are deployed mostly
on dedicated high performance data centers that are available
exclusively to a company or a research institution, and

such environments can suffer from the dearth of available
resources.

There are benefits in using VC systems to support MapRe-
duce type applications. First, VC can contribute a large
number of compute and storage resources to a MapReduce
platform. For example, the flagship VC project SETI@Home
provides 28.8 PBytes of disk storage aggregated from about
500,000 machines during the month of August/2010 [3].
In comparison, large-scale dedicated MapReduce systems at
Yahoo, Facebook and eBay are estimated to have of the order
of thousands of nodes with tens of PBytes in storage [4].
The large number of publicly-available donated resources
can help to build opportunistic MapReduce systems that
provide massive capacity for scientists who do not own
dedicated resources; furthermore, the simple MapReduce
programming model and the ability of the runtime system to
handle replicated data placement, data affinity in task place-
ment, and transparently handle failures can enable wider use
of VC systems for large-scale data-parallel applications.

However, the deployment of MapReduce on VC sys-
tems introduces several challenges. In general, the inherent
resource volatility of VC can restrict availability of the
MapReduce service. There are also implementation-specific
issues; for instance, SETI@Home has about 100,000 active
resources [5] at a time, and the Hadoop implementation can
have scalability limitation at this scale [6]. Thus, heuristics
to select a subset of VC resources for differentiated role
assignment needs to be incorporated. In a Wide Area Net-
work (WAN) environment, where most of VC resources are
located, the limited end-to-end connection due to private
IP addresses, network address translation (NAT), firewall
devices among donated resources, and bandwidth limitations
can limit correct operation of block replication and task
execution in MapReduce frameworks.

In this paper, we address the challenge of providing stable
MapReduce services on VC platform by leveraging the
availability characteristics of volatile resources. The overall
approach is to select a subset of nodes that are predicted
to be available in the future. We leverage an overlay vir-
tual network to recover end-to-end network connectivity in
a WAN environment constrained by NATs and firewalls.
Based on the thorough analysis of SETI@Home resource
availability logs provided by the Failure Trace Archive [5],

we confirmed that an available session with a longer uptime
tends to stay available longer, and that distribution can be
expressed as a Weibull function. Based on this observation
we propose to select a subset of nodes with longer session-
time to designate them as datanodes and task-trackers. In
addition to using the longer uptime nodes for data placement
and task execution, we propose the classification of nodes
into groups named regular-pool and infant-pool. Resources
in an infant pool contain valid data-blocks but the uptime
of current session is short to satisfy the criteria to become a
member of regular-pool. Nodes in a regular-pool satisfy the
current session uptime length criteria, and they perform as
ordinary datanode and tasktracker in Hadoop. Namenode
and jobtracker prefer nodes in a regular-pool for block-
placement and task scheduling, and nodes in a infant pool are
selected for job execution when task-trackers in a regular-
pool cannot handle given job request loads.

Simulations are conducted to measure the number of
interruptions during MapReduce operations by replaying
the availability log of SETI@Home [5]. The simulation
results demonstrate that our proposed uptime-based resource
selection mechanism provides more reliable service by re-
ducing the number of interruptions in half compared to an
availability-rate based mechanism [7] and by a factor of 12
compared to a random node selection mechanism.

In order to validate the proposed methods, we imple-
mented the infant-pool block placement and task scheduling
heuristic on top of the Hadoop default job-queue-task-
scheduler and delay-scheduler [8]. We have evaluated the
proposed heuristic on a real-world WAN cloud comput-
ing testbed, FutureGrid [9], by replaying the SETI@Home
availability logs to capture the volatility of resources in a
controlled manner. To evaluate the system in a realistic job
submission scenario, we leverage SWIM [10], a statistical
workload injector for MapReduce based on log files from
Facebook. The experiment results demonstrate that the adop-
tion of infant-pool improves the fault-tolerance of the system
by decreasing the number of interrupted tasks about 40%
when around 50% of nodes issue interruption event at least
once during the experiments.

In summary, the research contributions of this paper are
as follow:

• A novel uptime-based resource selection heuristic that
provides more reliable and consistent service than the
availability-rate based method.

• A novel infant-pool heuristic that can differentiate roles
of VC resources based on their predicted availability.

• Evaluations of proposed methods on an emulated
volatile environment replaying failure trace logs with
Hadoop job submission scenarios by Facebook.

II. MAPREDUCE ON VOLUNTEER COMPUTING AND
RELATED WORKS

In this section, we describe the characteristics of VC
resources that need to be considered to support MapReduce
applications and the corresponding related work in the
literature.

Volatility of Volunteered Resources
Participating nodes in a VC system can cease to donate their
computing power at any time, which prevents the delivery
of a reliable set of nodes to a MapReduce framework.
In order to deal with this issue, MOON [11] proposes to
leverage a small number of dedicated resources to provide
reliable services, in combination with adaptive task and data
scheduling algorithms. Similar to MOON, SpeQulos [12]
proposes a mechanism to provide reliable services in an
opportunistic computing environment by supplementing a
small number of dedicated cloud-computing resources for
redundant task execution at the end of job completion.
Though they can improve reliability of a system with oppor-
tunistic resources, the proposed algorithms require additional
dedicated resources where such nodes might not exist. In our
proposed method, without relying on dedicated nodes, we
leverage opportunistic resources that are likely to provide
reliable service in the future based on the uptime of the
current available session. Thus, our proposed heuristic can
help approaches such as MOON and SpeQulos to decrease
the number of dedicated resources that are needed.

Tang et. al. [13] presented an implementation of MapRe-
duce on a VC environment. In order to improve fault-
resilience, they leverage Bitdew [14], a data management
and distribution framework on a distributed environment
with volatile resources. They do not take into account
the different degrees of availability among opportunistic
resources. Our proposed uptime-based availability prediction
method can contribute to improve the reliability of such a
system.

Dynamic MapReduce Pool Configuration
The client/server-based architecture of MapReduce can
impose scalability limitations [6], which requires careful
monitoring in a VC environment where large numbers of
available resources may overwhelm the MapReduce central
manager. In order to maintain MapReduce pool size within
a controllable number of resources based on job demands,
an approach such as PonD [15] can be followed. Though
dynamic resource pool size configuration is possible, we
need to select a subset of volunteer resources that are likely
to provide reliable services in a MapReduce pool. Kondo et.
al. [16] and Javadi et. al. [17] analyzed availability logs of
real-world opportunistic resources and proposed heuristics
to predict highly-available nodes in the future based on the
pattern of past availability.

Similar to those works, ADAPT [7] used availability
history to predict future availability, and differentiated roles

of participating nodes based on the expected availability on
MapReduce. In this paper, we propose a different availability
prediction method that relies on the uptime of a current
session. Based on analysis of a SETI@Home log file, the
historical availability-based prediction incurs twice more
interruptions than our proposed uptime-based prediction
mechanism.

Operation in a Wide-Area-Network
Different from a data center network, VC resources are gen-
erally distributed across a WAN where end-to-end network
connection is not guaranteed due to private IP addresses,
NATs and firewalls. End-to-end communication is vital in
every phase of MapReduce tasks to share input blocks or
intermediate results. In this paper, we demonstrate how
we guarantee end-to-end connections in WAN by using a
virtual overlay network built on a P2P system [18]. In
addition to the limited connectivity in WAN, resources in VC
have lower bandwidths comparing to dedicated data center
machines. Thus, the current node- and rack-locality based
data placement and task scheduling policies of MapReduce
need to be redesigned. This paper does not address this
challenge; it is a subject of future work.

MapReduce Result Verification
Due to the free-to-join nature of VC resources, task results
must be confirmed correct. The majority-voting method at
a central manager that is leveraged by BOINC [19] might
not be applicable in MapReduce due to the large size of
intermediate results. In order to deal with this issue, Tang et.
al. [13] and Moca et. al. [20] proposed distributed majority
voting method that can be leveraged for intermediate result
verification of MapReduce on VC resources.

III. SYSTEM DESIGN

In this section, we present a heuristic to select subsets
of opportunistic resources that are likely to provide reliable
service by referencing the uptime of a current session. We
also propose the classification of nodes into an infant-pool
to increase the chance of locality-data usage of resources
that are predicted to be less reliable.

A. Considering Uptime to Determine Volatility

Javadi et. al. [17] and Nurmi et. al. [21] analyzed the avail-
ability logs of opportunistic resources from the SETI@Home
project and other computing resources. They fit the availabil-
ity patterns to statistical distributions using the Maximum
Likelihood Estimation (MLE), and the Weibull distribution
with the shape parameter between 0.0 and 1.0 represents the
characteristics accurately, which means the probability of a
session remaining active for another time-unit increases as
the longevity of the current session time increases. In other
words, we can interpret the length of each available session
(uptime) as the indicator of the probability that the session
will remain available in the future.

103 104 105 106 107 1080

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

remaining uptime (seconds in log scale)

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

one day
one week
one month
two month

Figure 1: The CDF of remaining uptime of all session. The
median remaining uptime of sessions whose running time is
over one-day (the left-most line) is about 105 seconds. The
same metric of sessions whose uptime is over two-months
(the right-most line) is about 2× 106 seconds

In order to confirm this characteristic, we analyzed
the SETI@Home availability log files from Failure Trace
Archive [5] from a perspective that was not addressed in the
previous analysis by Javadi et. al. [17]. Figure 1 shows a plot
of Cumulative Distribution Function (CDF) of remaining
uptime given that current uptime of an available session is
longer than the measured values (i.e., one day, one week,
one month, and two months, from left to right). We observe
that, as the current session uptime gets longer, the remaining
uptime also gets longer. For instance, the median remaining
time of sessions whose uptime is longer than one-day, one-
week, one-month, and two-months are 105, 4×105, 8×105,
and 2× 106 seconds, respectively. From this figure, we can
observe that the uptime of an available session can be an
indicator of future availability. In the evaluation section, we
will further compare our proposed uptime-based resource se-
lection method and availability rate-aware resource selection
mechanism [7] with respect to the number of interruptions
due to resource volatility.

We observed that longer uptime opportunistic resources
in a volunteer computing project tend to stay available
longer, and we can designate the long-running nodes for
more important tasks at every MapReduce phase in order
to decrease the interrupted service due to resource volatil-
ity. To investigate the distribution of number of resources
with respect to the given uptime, we count the number
of resources regarding their uptime at a daily basis in the
Figure 2. The horizontal axis shows the index of days since
October 5, 2008. The vertical axis shows the cumulative
number of resources in log scale. The bottom bar shows
the number of resources whose uptime is over two months,
and the upper bars represent the number of nodes whose
uptime is over one month, one week, and one day. Given

100#

800#

6400#

51200#

1# 6# 11# 16# 21# 26# 31#

##
of
#c
um

ul
at
ed

#n
od

es
#7#
lo
g#
sc
al
e#

index#of#day#since#05#Oct.#2008#

over#two#months# over#one#month# over#one#week# over#one#day#

Figure 2: number of active nodes whose uptime satisfies the
given criteria - 2 months, 1 month, 1 week, 1 day. At the
observed 1 month of time window, over 1000 nodes have
been running for over two months.

that the number of active resources at the period is about
106, we can see that about half of the available nodes have
been running over one day. We can also see that over 1,000
nodes have been running for over two months, and over
3,000 nodes have been available over one month during
the observation period. Though a direct comparison of the
number of datanodes with typical Hadoop clusters might not
make a fair illustration due to the distinct available storage
size and processing capacity, it is worth pointing out that
typical large-scale Hadoop clusters in production today have
few thousand nodes.

In our proposed MapReduce framework on opportunistic
resources, we would like to leverage the long-running nodes
to increase the reliability of the system. The namenode
and jobtracker, namely a central manager node, maintains a
threshold value, Thjoin, to determine if a resource has been
running for long period of time, and to see if it qualifies to
serve as a datanode and tasktracker. Based on the demands
of a job, a central manager node can adjust the Thjoin value
dynamically; as more jobs are submitted, Thjoin will be
lowered to invite more opportunistic resources serving as
datanode and tasktracker.

B. Infant Pool

Though we can increase the system reliability by using the
long-running nodes as the datanode, the failure of a long-
uptime node that was running as a datanode can result in
resetting the uptime, and it will take a while for the node
to be eligible for serving as MapReduce node. However,
an interrupted node whose uptime is less than Thjoin can
still have valid data-blocks that can be exploited for data
locality in task execution. According to the study of data-
block popularity distribution based on age [22], a data-block
is accessed by tasks for a non-negligible period of time - at
least several days. In an uptime-based MapReduce resource
selection mechanism, it is possible that a short-interval of
interruption can make a node with valid data-blocks unable

to serve as a data-node or task-tracker if the current session
time is less than THjoin. In order to accommodate nodes
with valid data-blocks but short-running times, we introduce
the concept of an infant-pool. To compare with nodes in
infant-pool, we name a set of nodes with uptime larger
than Thjoin as regular pool. Due to higher possibility of
interruptions for nodes in infant-pool, we do not allocate new
data-blocks to nodes in the pool. Instead, if task execution
slots of resources in regular-pool are all busy and the local-
block task execution condition is met for a node in the infant-
pool, the task is performed in the infant-pool node. The data-
blocks in infant-pool nodes are not counted towards the valid
data-block so that a namenode tries to achieve the expected
level of replication with data-blocks in a regular-pool.

By leveraging resources with likelihood of high-
availability in the future, we expect to decrease the number
of unexpected interruptions and improve system reliability.
By introducing the concept of an infant-pool, we try to
leverage already existing data-blocks for local-data task
execution.

C. Implementation Details

In order to validate our proposed heuristics, we imple-
mented a prototype using Hadoop-0.22.0 as a base source
code. We added a module to record uptime of a data-
node, and a module which determines whether a data-node
is going to be located in an infant-pool or regular-pool.
We leverage the default Hadoop block placement module
by adding a component to distinguish nodes in infant-pool
and regular-pool. The job scheduler also needs to distin-
guish them, and we implemented the proposed module on
Hadoop’s default job-queue-scheduler and delay-scheduler.
At both scheduling modules, we added a variable at the
JobInProgress class to count the number of rejected task-
tracker scheduling attempts. Initially, the count value is 0,
and the value is increased every time a job is not assigned
to a given task-tracker. Otherwise, if a task gets assigned,
the value of rejected scheduling count is decreased by half.
If the number of rejected task-tracker is larger than the
number of resources in infant-pool plus regular-pool, the job
can be assigned to nodes in the infant-pool. By counting
the number of rejected task-tracker scheduling attempts, a
job can wait until a task-tracker in regular-pool tries to
get assigned tasks. If task-trackers in regular-pool are busy
running other jobs, the rejected count will increase, and the
job can be assigned to nodes in a infant-pool. This step
is similar to delay scheduler [8], which tries to increase the
chance of data block local-node execution by waiting a short
period of time.

IV. EVALUATION

In this section, we compare the performance of node
selection heuristics of our proposed uptime-based approach
and availability-rate aware methods through simulation. We

also demonstrate the operation of the proposed heuristics by
implementing a prototype on top of Hadoop, deploying it on
a real-world WAN environment, and conducting experiments
by replaying a synthetic failure scenario.

A. Experiments on Uptime-based Resource Selection

In order to evaluate the performance of uptime-based
resource selection mechanism, we implemented a memory-
efficient simulator which can replay a SETI@Home log
file by repeating the available/unavailable transitions per
each node. Of the total nodes, we select a target number
of resources (500, 1000, 2000, 3000) using different node
selection methods. If a selected node becomes unavailable,
we remove the failed node from the list and add a new
high-ranked node. After performing the simulation for the
entire period, we summarized the data between May 17,
2008 and October 26, 2008; this period was selected as it
exhibits the largest number of active resources. The number
of interruptions (when the target number of resources is
1000) is shown in Figure 3.

Each bar shows the number of interruptions for differ-
ent node selection mechanisms. rnd means random node
selection method. up-t is our proposed uptime-based node
selection method. upt+ar is the combination of uptime-based
method and available-rate based method. In the method,
we select high uptime nodes that have been available over
95% of time in the past. w-upt means the weighted up-
time, which reflects the past available rate while selecting
nodes based on the uptime. In this method, we multiply a
constant value calculated from the previous available rate
to make a node that has higher previous available rate to
be registered earlier. p-ar means the available-rate based
resource selection method that excludes the current session
uptime; hence, this value is static when a new session begins.
comp-ar means comprehensive available-rate. This method
considers available rate calculated by including the current
session time; thus, this value is dynamic. In summary, up-
t is our proposed node selection method. upt+ar and w-
upt are uptime-based node selection methods which consider
previous available rate. p-ar and comp-ar are methods that
rely on the previous available-rate.

As shown in the figure, our proposed uptime-based
method (up-t) shows the least number of interruptions
comparing to other heuristics. Uptime-based methods which
consider the past available rate (upt-ar and w-upt) do not
show as good result as the simple uptime-based method.
The available-rate aware node selection methods incurs
2.6x more interruptions than our proposed mechanism.
Previous work on MapReduce on opportunistic resources,
ADAPT [7], leverages available-rate to improve the relia-
bility of the system. Based on this simulation result, we
can expect that the system reliability can be improved by
changing the reliable-node selection mechanism.

35490&

2792&

7647&
6260&

19585&

7394&

0&

5000&

10000&

15000&

20000&

25000&

30000&

35000&

40000&

rnd& up1t& upt+ar& w1upt& p1ar& comp1ar&

N
um

be
r&o

f&i
nt
er
ru
p>

on
s&

Node&select&methods&

Figure 3: The total number of interruptions during 6 months
with 1,000 nodes according to the different node-selection
method. up-t is our proposed uptime-based selection mech-
anism. It incurs fewer than half interruptions compared to
the availability-rate aware resource selection method.

In order to further investigate the reasons of different
number of interruptions, we show the minimum uptime and
average prior available rate among the selected nodes at
the time of selection in Table I. The uptime-based methods
show much higher minimum uptime than availability-rate
based method. Among the uptime-based methods, the ones
that consider the available-rate lower the barrier of uptime
and increase the previous available-rate to be selected as
MapReduce nodes. However, this lowered uptime barrier
resulted in the more number of interruptions as shown in
the Figure 3. We measured the Pearson product-moment
correlation coefficient between the number of interruptions
in Figure 3 and the minimum uptime value in Table I, and
the coefficient is -0.6171, which means high negative corre-
lations; the higher the uptime, the lower the interruptions.

Table I: The minimum uptime and average available rate of
selected nodes

minimum uptime (seconds) average available rate
rnd 1 0.7156
up-t 4,433,460 0.76

upt+ar 184,713 0.9859
w-upt 2,425,241 0.9717
p-ar 4 0.9964

comp-ar 713724 0.999714

Figure 4 shows the average number of interruptions-per-
day (primary vertical axis) with different number of target
resources (horizontal axis) and the minimum uptime of the
registered nodes (secondary vertical axis) for the uptime-
based resource selection method. As we can see from the fig-
ure, as the target number of resources increases, the average
number of interruptions increases and the minimum uptime
of registered nodes decreases, which match the observations
in Table I. The percentile value on top of each bar shows
the fraction of nodes that have failed on a daily-basis. For

1.07%&
1.72%&

3.44%&

4.76%&

0&

10&

20&

30&

40&

50&

60&

70&

80&

0&

20&

40&

60&

80&

100&

120&

140&

160&

500&nodes& 1000&nodes& 2000&nodes& 3000&nodes&

m
in
.&r
eg
ist
er
ed

&7
m
e&

x&
10

00
00

&

av
g.
&n
um

be
r&o

f&i
nt
er
ru
p7

on
s&

number&of&target&nodes&

average&interrup7ons&per&day& minimum®istered&up7me&(secs)&

Figure 4: The average number of interruptions per day
of uptime-based node selection method and the minimum
uptime of registered nodes. As the target number of nodes
increases, more interruptions happen and the minimum up-
time decreases. With 3000 target resources, 4.67% of nodes
fail daily on average.

the target number of resources equal to 500, about 1% of
nodes became unavailable. For the target number of nodes
being 3000, 4.76% of nodes transit to unavailable status.
By carefully selecting subset of nodes with high-chances
of being available in the future, we can provide reliable
MapReduce services by using the opportunistic resources.

B. Experiments with a Prototype Implementation in WAN

In this section, we evaluate the prototype implementation
described in Section III-C. In order to evaluate our proposed
algorithm in a realistic WAN environment, we created a
virtual cluster with 30 virtual machine instances in Chicago,
Texas, and Florida (10 VMs in each site) using Future-
Grid [9]. Each VM is equipped with 1GByte of memory and
a single core with Hadoop-0.22.0 of our proposed algorithm
implemented. The namenode is located on the Chicago site,
and other nodes work as both data-node and task-tracker.
In order to guarantee the end-to-end connection in a WAN
environment, we created a virtual network using IPOP [18],
and all communications happen through the virtual network.
In order to verify the heterogeneous network status, we
show the intra- and inter-site ping response time and average
bandwidth in Table II and Table III, respectively. Note
that we use iperf to measure the bandwidth, and these
values include the overhead of processing every packet at
an overlay network layer. As shown in the table, we can
replay the heterogeneous latency and bandwidths in the
given experiment environment.

Table II: ping response time (milli-seconds)

Ping (msec) Florida Chicago Texas
Florida 0.3 46 88
Chicago 46 0.24 56

Texas 62 56 0.92

0"

5"

10"

15"

20"

25"

30"

35"

INF" NIF" INF" NIF" INF" NIF" INF" NIF"

10/10/10" 20/0/10" 10/10/10" 20/0/10"

1X"workloads" 2X"workloads"

nu
m
be

r"o
f"i
nt
er
ru
pt
ed

"ta
sk
s"

Node"interrup=on"and"workload"scenario"

Figure 5: The number of interrupted tasks due to transition
to unavailable state with different job loads and failure
scenario. In general, using the infant-pool decreases the
number of interrupted tasks.

Table III: bandwidth measurement (bits per second)

BW (bps) Florida Chicago Texas
Florida 137 38.73 5.08
Chicago 17.11 152 19.63

Texas 34.39 32.84 53.37

We replayed resource availability/unavailability transi-
tions by referencing the SETI@Home log files at the date
of 14 October 2008. Because we could not replay logs of
all available nodes at the time given the smaller set of 30
VM instances in the experiment, we synthetically selected
30 nodes from different previous uptime categories. In order
to differentiate the prior uptime, we divide nodes in the
log file into three categories; high-uptime nodes have over
one-week of uptime before the date. short-uptime nodes
have less than one-day of uptime at the observed date,
and mid-uptime nodes have been running more than one-
day, less than one-week at the date. At this experiment, we
randomly select 10/10/10 as the number of resources at each
short/mid/high uptime node category. In order to generate
more transitions, we also performed experiments with node
selection distribution of 20/0/10. We implemented infant-
pool method both with Hadoop default job-queue scheduler
and delay-scheduler. They show similar patterns, and we
present the results with the default job-queue scheduler.

In order to evaluate the system in a realistic job submis-
sion scenario, we leverage SWIM [10], a statistical workload
injector for MapReduce based on log files from Facebook.
The workload includes various kinds of workloads that have
high volume of input dataset for Map task and intermediate
data for Reduce task. We generated 100 jobs from the given
job scenario with different resource pool size configurations
to differentiate job loads.

Figure 5 shows the number of interrupted tasks under
different job loads with different node state transition rates.
The Facebook job generator manipulates the job loads by

0"

2"

4"

6"

8"

10"

12"

14"

16"

37"38"52"44"61"54"38"61"32"40"38"56"40"34"38"78"54"81"62"63"57"34"32"40"55"82"39" 7"

1X"workload" 2X"workload"

no
rm

al
ize

d"
va
lu
e"

normalized"latency" transi?on@free"latency"

Figure 6: The impact on the job response time normalized
with interrupt-free job execution when a task is interrupted
due to state transition.

changing the input, intermediate, and output data size while
keeping the inter-job submission rate the same. By changing
the distribution of uptime nodes (10/10/10 and 20/0/10), we
expect to change the rate of transition between available
and unavailable status. INF shows the number of interrupted
tasks when infant-pool is enabled, and NIF shows the metric
when infant-pool is disabled. We can observe that the num-
ber of interrupted tasks decreases when we enable infant-
pool, especially when 2X workload with more transitions
happening.

In order to observe the influence of task interruption to
the final job response time, we calculated the normalized job
latency (Figure 6). We normalize the latency of jobs with
interrupted tasks to job response time with no interruptions.
Note that block placement remains the same for both cases,
but different job scheduling decision can result in different
job response times, especially due to heterogenous available
bandwidths. As shown in the figure, jobs with interrupted
tasks have a heavy impact to the response time, which
motivates to minimize the number of task interruptions. In
addition to the final response time impact, we can also
observe that the impact varies across the jobs. This can be
explained by referencing the work by Dinu et. al. [23]. They
observe that task-tracker failures in the middle of execution
affects MapReduce job response time unexpectedly based
on the progress of the job when the failures happen.

Overheads: Task execution and block placement with
infant-pool enabled can incur additional overhead with re-
spect to the task schedule waiting time, because a task
waits at least one-round of update from task-trackers until it
meets regular-pool nodes. Given that the default task-tracker
update interval is 3 seconds, this waiting time is negligible
comparing to the MapReduce job execution time. Infant-pool
also induces additional storage overhead, because a block
placed in an infant-pool node is not counted as a live block.
In our experiments, infant-pool enabled execution consumes
at most twice more storage capacity comparing with infant-
pool disabled mode.

V. CONCLUSION

In this paper, we presented challenges and opportunities
of using MapReduce on opportunistic resources. Among the
challenges, we focused on heuristics of selecting subset of
highly-available nodes in the future by using the current
session time. With thorough analysis of real opportunistic
resource log files, we could confirm that our proposed
uptime-based resource selection method can perform better
than availability-rate aware prediction methods. The analysis
also showed the feasibility of using opportunistic resources
in MapReduce if we designate a small number of resources
that are predicted to be highly available in the future.
The experiments were conducted by replaying the volunteer
computing availability logs with a real-world MapReduce
job scenario in WAN environment with a prototype imple-
mentation of our proposed infant-pool feature with Hadoop
MapReduce. The experimental results demonstrate that the
infant-pool helps to decrease the number of interrupted tasks
that can impact the final job response time.

Throughout the analysis and experiment, we could not
only discovery the opportunities of volunteering resources
for MapReduce but also some challenges that have be
addressed. First, in a wide-area environment where the
end-to-end bandwidth is limited, we need to re-design
the task scheduling module being bandwidth aware. In a
very-large volunteer computing resource pool, the current
client/server architecture might have limitations for close
monitoring/management of underlying resources, and we
will address this issue by creating a MapReduce pool
on-demand based on job demands using a decentralized
resource discovery method.

ACKNOWLEDGMENT

This material is based upon work supported in part by
the National Science Foundation under Grants No. 0910812,
0751112, 0855123 and 0855031. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM, 51(1):107–
113, 2008.

[2] Apache Software Foundation. http://hadoop.apache.org/.

[3] M. Moca, G.C. Silaghi, and G. Fedak. Distributed results
checking for mapreduce in volunteer computing. In Paral-
lel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, pages
1847 –1854, may 2011.

[4] Konstantin Shvachko. Apache haoop the scalability update.
USENIX, login Volume 36 No 3, June 2011.

[5] Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick
Epema. The failure trace archive: Enabling comparative
analysis of failures in diverse distributed systems. In Cluster,
Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on, pages 398 –407, may 2010.

[6] Konstantin Shvachko. Hdfs scalability: The limits to growth.
USENIX, login Volume 35 No 2, April 2010.

[7] Hui Jin, Xi Yang, Xian-He Sun, and Ioan Raicu. Adapt:
Availability-aware mapreduce data placement for non-
dedicated distributed computing. In Proceedings of the the
32nd International Conference on Distributed Computing
Systems, ICDCS 2012, 2012.

[8] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: a simple technique for achieving locality and
fairness in cluster scheduling. In Proceedings of the 5th
European conference on Computer systems, EuroSys ’10,
pages 265–278, New York, NY, USA, 2010. ACM.

[9] Gregor von Laszewski, Geoffrey C. Fox, Fugang Wang, An-
drew J Younge, Archit Kulshrestha, Gregory G. Pike, Warren
Smith, Jens Voeckler, Renato J. Figueiredo, Jose Fortes,
Kate Keahey, and Ewa Delman. Design of the futuregrid
experiment management framework. In GCE2010 at SC10,
New Orleans, 11/2011 In Press. IEEE, IEEE.

[10] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy
Katz. The case for evaluating mapreduce performance using
workload suites. In Proceedings of the 2011 IEEE 19th
Annual International Symposium on Modelling, Analysis, and
Simulation of Computer and Telecommunication Systems,
MASCOTS ’11, pages 390–399, Washington, DC, USA,
2011. IEEE Computer Society.

[11] Heshan Lin, Xiaosong Ma, Jeremy Archuleta, Wu-chun Feng,
Mark Gardner, and Zhe Zhang. Moon: Mapreduce on op-
portunistic environments. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed
Computing, HPDC ’10, pages 95–106, New York, NY, USA,
2010. ACM.

[12] Simon Delamare, Gilles Fedak, Derrick Kondo, and Oleg
Lodygensky. Spequlos: a qos service for bot applications
using best effort distributed computing infrastructures. In
Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing, HPDC ’12,
pages 173–186, New York, NY, USA, 2012. ACM.

[13] Bing Tang, M. Moca, S. Chevalier, Haiwu He, and G. Fedak.
Towards mapreduce for desktop grid computing. In P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC),
2010 International Conference on, pages 193 –200, nov.
2010.

[14] Gilles Fedak, Haiwu He, and Franck Cappello. Bitdew: a
programmable environment for large-scale data management
and distribution. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, SC ’08, pages 45:1–45:12,
Piscataway, NJ, USA, 2008. IEEE Press.

[15] Kyungyong Lee, David Wolinsky, and Renato J. Figueiredo.
Pond: dynamic creation of htc pool on demand using a
decentralized resource discovery system. In Proceedings
of the 21st international symposium on High-Performance
Parallel and Distributed Computing, HPDC ’12, pages 161–
172, New York, NY, USA, 2012. ACM.

[16] D. Kondo, A. Andrzejak, and D.P. Anderson. On correlated
availability in internet-distributed systems. In Grid Comput-
ing, 2008 9th IEEE/ACM International Conference on, pages
276 –283, 29 2008-oct. 1 2008.

[17] B. Javadi, D. Kondo, J.-M. Vincent, and D.P. Anderson. Dis-
covering statistical models of availability in large distributed
systems: An empirical study of seti@home. Parallel and
Distributed Systems, IEEE Transactions on, 22(11):1896 –
1903, nov. 2011.

[18] A. Ganguly, A. Agrawal, P.O. Boykin, and R. Figueiredo.
Ip over p2p: enabling self-configuring virtual ip networks
for grid computing. In Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, page 10
pp., 2006.

[19] David P. Anderson. Boinc: A system for public-resource
computing and storage. In Fifth IEEE/ACM International
Workshop on In GRID, 2004.

[20] M. Moca, G.C. Silaghi, and G. Fedak. Distributed results
checking for mapreduce in volunteer computing. In Paral-
lel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, pages
1847 –1854, may 2011.

[21] Daniel Nurmi, John Brevik, and Rich Wolski. Modeling
machine availability in enterprise and wide-area distributed
computing environments. In In Euro-Par05, pages 432–441,
2003.

[22] Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth Kan-
dula, Albert Greenberg, Ion Stoica, Duke Harlan, and Ed Har-
ris. Scarlett: coping with skewed content popularity in
mapreduce clusters. In Proceedings of the sixth conference on
Computer systems, EuroSys ’11, pages 287–300, New York,
NY, USA, 2011. ACM.

[23] Florin Dinu and T.S. Eugene Ng. Understanding the effects
and implications of compute node related failures in hadoop.
In Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing, HPDC ’12,
pages 187–198, New York, NY, USA, 2012. ACM.

