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Abstract—Serverless computing and public Function-as-a-
Service (FaaS) systems are gaining significant attention because
they help easily build a highly available system. With recent
advances in micro virtual machines (microVM), the internal
architecture of FaaS systems substantially changes. This paper
focuses on a thorough investigation of the recent improvement
in public FaaS systems concerning numerous concurrent ex-
ecutions. The adoption of microVM has changed the nature
of FaaS, especially for runtime reservations. As a result, the
performance degradation has decreased significantly compared
to the previous generation FaaS, as shown in the experiment.

I. INTRODUCTION

Cloud computing provides great flexibility and elasticity
in deploying and operating highly available applications.
In a classical cloud computing model, Infrastructure-as-
a-Service (IaaS), users must design a system architecture
to ensure scalability and fault-tolerance by using cloud-
native services, such as auto-scaling and load-balancing.
Next to the IaaS, container-based technology, such as Kuber-
netes [11], provides scalability and fault-resiliency with few
configurations. In the serverless computing, cloud service
providers guarantee scaling out or in underlying resources as
the number of requests changes. To handle resource failure,
public serverless computing service providers embed fault-
tolerance mechanisms for reliable services.

Serverless computing becomes feasible through using
various fully-managed services, such as Amazon S3 for
object storage, API Gateway for a managed HTTP end-
point, SQS for message queuing, and SNS for message
notification. Using fully managed services, public cloud ven-
dors abstract complex infrastructure management, necessary
software stack installation, instance scaling, and replication
so that users can focus on core application development.
However, the high level abstraction of fully managed ser-
vices lacks customization capability, and users must rely
on functionalities provided by vendors. To grant flexibility
in developing applications using serverless computing, FaaS
allows users to write a custom code that is executed on an
environment fully managed by cloud service providers.

The FaaS is developing quickly, and many public cloud

vendors provide this service, such as Amazon Web Service
(AWS) Lambda, Google Cloud Functions, and Microsoft
Azure Functions, expediting the adoption of serverless
computing. Despite its simple interface and fully managed
execution environment, the applications of FaaS are limited
to simple tasks, for instance, embarrassingly parallel jobs
that do not need communications among function runtimes,
functions compositions, and cloud service orchestrations [4].
One of the reasons that wide adoption of FaaS hindered is
the inconsistent performance of the CPU and the disk and
network I/O performance especially when many functions
are requested concurrently in a short period [13], [6], [9].
Performance degradation in such cases happens due to the
interference among the function runtimes, because cloud
service vendors execute function runtimes on the same host
as much as possible to maximize the server utilization and
minimize cost.

To further increase resource utilization and lessen se-
curity concerns in FaaS, microVMs have been developed
by multiple FaaS vendors, such as AWS Firecracker [1]
and Google gVisor [14]. By adopting a microVM, the
performance characteristics of the FaaS can change, and it
is crucial to understand the traits of contemporary FaaS sys-
tems. We conducted thorough evaluations of AWS Lambda
and Google Cloud Functions under diverse scenarios and
discovered that the interference among function runtimes re-
duces significantly when a user submits numerous functions.
Improved performance is more noticeable for heavy disk
and network I/O functions. In comparison to the previous
work [13], [6], [9] that had evaluated various FaaS systems,
the disk and network I/O performance with concurrent
tasks improves significantly when the number of concurrent
function invocations increases. We are sure that the recently
stabilized FaaS concurrent execution performance helps to
maintain stable service and to adopt FaaS and serverless
computing for more diverse data oriented applications.

II. EVOLUTION OF SERVERLESS COMPUTING AND FAAS

Cloud computing services have evolved in the direction
of hiding complexity in maintaining the high availability
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of applications. The first-generation cloud computing ser-
vice model, IaaS, uses load-balancing and auto-scaling to
guarantee fault-tolerance and scalability, respectively. They
greatly help to develop and maintain highly available sys-
tems, but the proper service setting for the scaling policy,
network, and security can be very challenging, even for
system experts. To mitigate the burdens of architecting and
maintaining highly available cloud systems, public service
vendors provide fully managed services that have a higher
level of resource abstraction while embedding inherent high-
availability features.

A. Accelerating Serverless Adoption with FaaS

The FaaS is a fully managed cloud service that provides
various programming language runtime environments, such
as Python, Java, C#, JavaScript, Ruby, and Go. Public cloud
service vendors provide FaaS while integrating the service
with other fully managed cloud services.

FaaS has different resource allocation and cost calculation
mechanisms from IaaS. In the FaaS runtime setup, users
set the maximum memory size that a function runtime can
use. The CPU is allocated proportionally to the maximum
memory size. Usage costs are calculated in a very fine-
grained manner. For instance, AWS Lambda is billed every
100 milliseconds proportional to the allocated maximum
memory size.

1) FaaS Runtime Internal: Container technology provides
process-level isolation by using various Linux kernel fea-

tures. Although containers of the same machine share a
kernel with a host operating system, the chroot kernel feature
lets a container to have its own exclusive file system. The
cgroup feature isolates the CPU, memory, disk, and network
I/O resources among containers. The namespace feature
allocates the exclusive process ID tree per each container.
The architecture of the container technology is illustrated
in Figure 1a. Using container technology, Docker [10] pro-
vides easy-to-use interfaces and a novel image-management
mechanism. The improvements have made Docker widely
adopted in experimental and production environments. In
addition to Docker’s basic container-management features,
Kubernetes [11] provides container-cluster management ser-
vices that support load-balancing and auto-scaling for high
availability, and many industrial applications have adopted
Kubernetes in production environments.

In the beginning of FaaS, the container technology was
adopted to provide function runtime environments so that
a runtime can be started and stopped promptly because
the container has a lower management overhead than the
virtualization technique [3]. Despite the light overhead of
containers, sharing a kernel among containers in a host
machine can cause security vulnerabilities and unexpected
interruptions [12]. To mitigate security concerns, public
FaaS providers designate a host machine for each account to
execute functions exclusively [13]. However, such resource
scheduling can result in inefficient resource usage when
an account does not execute numerous functions simulta-
neously. Even worse, it is likely that the same function
owned by an account can be invoked simultaneously on
the same host that is assigned to an account. It can result
in severe interruptions among function invocations because
invocations of the same function necessitate accessing the
same resources.

Kim et al. [8], [6] thoroughly investigated the performance
of FaaS when multiple functions are invoked simultaneously.
They found that, even under the same runtime configuration,
simultaneous invocations of 10s of functions can result in
about three times more time to download a file from a
shared object storage service through a network compared
to a single invocation case. For an application that performs
disk I/O operations, concurrent function executions result
in about six times performance degradation compared to a
single function invocation. They concluded that the exclusive
VM instance scheduling to enhance the security of FaaS
resulted in performance degradation.

To better isolate function runtimes, public cloud service
vendors have developed microVMs, including Amazon Fire-
cracker [1] and Google gVisor [14], that enhances the secu-
rity of function runtimes. To enhance security, Firecracker
has adopted a VM Monitor (VMM) based on Kernel-based
Virtual Machine (KVM). Using virtualization is expected
to lower the security vulnerability more than the container-
based approach. It is built with minimal device emulation
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Figure 2: AWS Lambda latency to complete various tasks
with different memory size configured
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Figure 3: Google Cloud Functions latency to complete
various tasks with different memory size configured

to enhance the start-up time of a VM and reduce memory
overhead [1]. The detailed architecture of Firecracker [1] is
depicted in Figure 1b.

III. EVALUATION

In this section, we evaluate the performance of recent
FaaS systems to see whether the adoption of microVM has
resulted in the performance improvement over the previous
container-based approach. AWS and Google have publicly
announced using microVM for FaaS. However, other major
cloud service vendors, such as Microsoft Azure and IBM
cloud, did not make related announcements, and we per-
formed the experiments with AWS and Google cloud.

A. Performance of Recent Public FaaS Systems

We first evaluate the up-to-date performance of the pub-
licly available FaaS: AWS Lambda and Google Cloud Func-
tions. As described in Section II-A, the adoption of the
microVM for function runtime changes the characteristics
of FaaS significantly, especially for runtime scheduling.
We chose AWS and Google Cloud for evaluation because
they recently announced using microVMs. We are primarily
interested in the performance of the recent FaaS using mi-
croVMs, and we aim to compare the current characteristics
with those of the pre-microVM by referencing [13], [9], [8],
[6].

1) Performance with Different Memory Configuration:
Figures 2 and 3 reveal the latency of the running CPU,
network, and disk I/O intensive workloads under different
memory configurations. In the experiments, we used the
workloads suggested in FunctionBench [7], [5]. In Function-
Bench, we used Linkpack for the CPU intensive workload,

object storage service downloading/uploading 100MB file to
measure the network performance, and the dd workload to
measure the disk I/O performance. In the experiments, we
configured the function memory size from 128MB to the
maximally available size, that is, AWS Lambda at 3008MB
and Google Cloud Functions at 2048MB, doubling it for
each experiment. The missing bars in the figure indicate that
the given workload cannot be completed with the configured
memory size.

In each memory configuration, a single function (concur-
rency being one) is invoked six times, and we removed the
latency of the first invocation to remove the effect of the
cold-start. The cold-start is an important issue that needs to
be considered to develop applications with FaaS. However,
recent advancements from public vendors provide a way
to overcome the cold-start problem. For example, using
provisioned concurrency of AWS Lambda [2] prepares a set
of pre-warmed function runtimes, and cold-start problem can
be mitigated. Given this situation, we focus on evaluating
FaaS under warm-start scenarios. In the figures, we show
the median value in the bar with minimum and maximum
latency in the error bars.

In each figure, the horizontal axis indicates the configured
memory size, and the vertical axis indicates the latency
in seconds. The FaaS of both AWS and Google Cloud
claims that the resources are allocated proportionally to
the configured memory size. On top of the bars in each
figure, we list the ratio of the latency to the half memory
size configuration latency. The number indicates whether
the increase in the memory size results in a proportional
performance gain. Ideally, the value should be inversely
proportional to the memory size. For instance, an increase
in the memory size from 128MB to 256MB should result
in half the latency, and the value on a bar should be 0.5
if it has an exactly proportional latency reduction with
the increased memory size. In Figure 2a, the value when
Memory size being 256MB is 0.63, which means that the
latency reduction is not as good as the increase in the
configured memory size.

For the CPU intensive workloads (Figure 2a and Fig-
ure 3a), we confirm that the performance is proportional
to the configured memory size, as presented in the previous
work [13], [9]. However, the performance of heavy network
workloads is not proportional to the configured memory
size, especially for AWS Lambda. From this experimental
result, we conclude that the network resource is not allocated
proportionally to the configured memory size and that users
should be cautious when running heavy network applications
with FaaS, especially data-intensive applications.

2) FaaS Performance with Different Level of Concurrent
Executions: We evaluate the performance of FaaS under
different degrees of concurrent executions. Figures 4 and
5 illustrate the results from AWS Lambda and Google
Cloud Functions, respectively. Each figure has three sub-
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Figure 4: Normalized latency of AWS Lambda under different level of concurrency execution
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Figure 5: Normalized latency of Google Cloud Functions under different level of concurrency execution

figures that reveal the performance of the CPU, network, and
disk I/O workloads under different numbers of concurrent
executions. For workloads, we used the same scenarios that
we used in Section III-A1. In the figures, the horizontal axis
indicates different memory configurations, and the vertical
axis shows the normalized latency. In the normalization step,
we chose the fastest latency value among different con-
currency invocations with the same memory configuration
and calculated the relative value to the fastest latency. In
each workload, we conducted experiments with differently
configured memory sizes, and we demonstrated two cases
of the experimental results: one with the least performance
variance of different memory sizes (on the left) and another
with the most variance (on the right).

The performance does not differ much as the concurrency
level changes. This observation is contrary to the work
presented by Wang et al. [13] and Kim et al. [6] presented.
In their work, the performance degrades significantly as the
the number of concurrent executions increases, especially for
heavy disk and network I/O workloads. For heavy network
workloads, the latency to download a file from a public
object storage service increases more than three times as
the number of concurrent functions increases from 1 to 26.

For sequential disk I/O operation, the per function runtime
bandwidth decreases more than six times. They concluded
that packing many function runtimes into a single VM for
each account to preserve security is the primary reason for
such a contention.

Regardless of the workload type in Figures 4 and 5, the
latency does not increase much, although the concurrency
level increases. The most variability is exhibited with the
Google Cloud Function Network workload (Figure 5b).
However, even in the worst case, the latency increases about
50% on average, which is a significant improvement over
the old generation FaaS. In summary, both AWS Lambda
and Google Cloud Functions exhibited a marginal latency
increase as the concurrency level increased. Comparing the
AWS Lambda and Google Cloud Functions, AWS Lambda
has better performance concerning the interference during
concurrent function executions.

To further analyze the reason for improved concurrency
execution performance, we investigated VM and the function
runtime scheduling algorithm. Wang et. al. [13] proposed
a mechanism to detect the VM ID of a function runtime
that references the /proc/self/cgroup file. The runtime for
VM mapping is supported only in AWS Lambda. Using the
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Figure 6: Normalized latency of Google Cloud Functions
under different level of concurrency execution

method, we recorded VM IDs of the concurrent executions
of the same function from 10 to 100. To improve the chances
of locating a functions on the same VM higher, we set the
function memory size at the minimum (i.e., 128MB).

Figure 6a illustrates the distribution of distinct VM IDs
(in the y-axis) for different degrees of concurrent executions
(in the x-axis). We added two reference lines. A solid line
is the graph of y = x, which indicates that all functions
are executed on different VMs. Another dotted line is the
graph of y = 1

26 × x, which indicates the maximum
function runtimes (26) are packed into a single VM with
a memory size of 128MB [13], [6]. The figure indicates
that all functions are executed on different VMs. This is the
primary reason that the resource contention from concurrent
function executions significantly decreased. In the analysis
results of the previous generation FaaS system [13], a VM
is allocated to a user, and the function runtimes are packed
into the VM as much as possible. The change in the function
runtime to VM scheduling prevents functions with similar
characteristics from running in the same VM and could
lessen the overall interference among the function runtimes.
Figure 6b displays the distinct number of runtime IDs and
confirms that all functions are correctly executed on different
runtimes.

IV. CONCLUSION AND FUTURE WORK

Serverless computing and FaaS systems provide a new
way to develop applications in cloud computing. Recently,
public FaaS vendors have announced the development of a
microVM that inherits the strong isolation of VMs with the
minimal management overhead of containers. To understand
the influence of adopting a microVM as the underlying
FaaS runtime management mechanism, we thoroughly inves-
tigated performance of the public FaaS system, focusing on
the interference among function runtimes. We could uncover
great performance improvement that reverts claims made by
previous publications.

In this paper, we aimed quantitative evaluation of server-
less computing and public FaaS systems. Other than latency

and scalability measurements, a fair cost evaluation is chal-
lenging. The research on the Quality of Service (QoS) of
serverless computing and the cost model to maintain the
desired QoS level is part of our ongoing work.
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