
FunctionBench : A Suite of Workloads for
Serverless Cloud Function Service

Jeongchul Kim
College of Computer Science

Kookmin University, South Korea
kjc5443@kookmin.ac.kr

Kyungyong Lee
College of Computer Science

Kookmin University, South Korea
leeky@kookmin.ac.kr

Abstract—Serverless computing is attracting considerable
attention recently, but many published papers use micro-
benchmarks for evaluation that might result in impracticality.
To address this, we present FunctionBench, a suite of practical
function workloads for public services. It contains realistic
data-oriented applications that utilize various resources during
execution. The source codes customized for various cloud service
providers are publicly available. We are positive that it suggests
opportunities for new function applications with lessen experi-
ment setup overheads.

Index Terms—workload; serverless; benchmark; FaaS; cloud

I. INTRODUCTION

Serverless computing with a Function-as-a-Service (FaaS)
execution model is rapidly gaining popularity. The FaaS model
allows programmers to focus on the core application devel-
opment without overhead from server provisioning and run-
time management. In the FaaS execution model, containers
launched from virtual machines are utilized to run user-defined
functions. It is well-known that many cloud service vendors
provide serverless computing services with proprietary-library
attached to a FaaS model [2]. For example, the Lambda service
by AWS, which is the first public FaaS provider, provides a
well-integrated service with AWS S3 (object storage), Dy-
namoDB (key-value storage), SNS (notification), and SQS
(message queueing).

Due to its popularity, the FaaS model has been employed in
the industry and academia to achieve several applications and
research breakthroughs, respectively, resulting in the coverage
of a wide range of topics such as opportunities and limitation
of serverless computing [2], new applications [4, 1], function
run-time environment optimization [6], and public service
comparison [8, 5].

Though many research results based on the FaaS execution
model have been published in the literature, they lack com-
mon workloads that are vital in the accurate comparison of
many systems and algorithms. Consequently, most published
results are based on micro-benchmarks that emphasize specific
computer resources such as CPU, memory, disk, or network.
Though such micro-benchmarks provide a way to evaluate
each resource exclusively, they are different from the require-
ments of real FaaS applications that are widely used recently.
To overcome the limitation, we propose FunctionBench, which
provides a suite of workloads to evaluate various aspects of a

FaaS execution model in realistic application scenarios1.
FunctionBench contains a micro-benchmark and an appli-

cation workload; the micro-benchmark uses simple system
calls to exclusively measure the performance of the target
resource, while the application-benchmark represents realistic
data-oriented applications that generally utilize various re-
sources together. We are positive that the introduction of Func-
tionBench will enable researchers to easily deploy function
applications in the accurate evaluation of various systems and
algorithms. As far as we know, the proposed FunctionBench
is the publicly available FaaS workload suites that can be
deployed on public cloud services.

II. PROPOSED FUNCTION WORKLOADS

Table I shows FuntionBench workloads. The column labeled
amount of loads represents the relative overhead intensity
of each workload, and the input/output columns define how
they should be prepared to run the workloads. The current
version of FunctionBench supports Python run-time, and we
plan to support other programming languages. To make the
workloads widely applicable, we prepare each function to be
deployable in AWS, Microsoft, and Google’s cloud function
service. In the AWS and Google cloud, users can configure the
allocated RAM of the function run-time. Moreover, based on
the configured memory size, we prepared the workload input
size to be adjustable.

Micro-benchmark The FunctionBench contains the float
workload (floating point arithmetic operations - squareroot,
sin, and cos); matrix multiplication (two N-dimensional square
matrix); and Linpack (solving linear equations), which is used
to mainly measure the CPU and memory bound performance.
To measure the performance of the disk IO, we add a micro-
benchmark that performs the dd system command, which
creates a file in the /tmp/ directory of the function run-time.
Furthermore, to measure the network performance, we added
the cloud storage (download the object from the input bucket
and upload the object to the output bucket); and an iperf3
workload that initiates a direct connection between sender and
receiver for a test. Since most of current function execution en-
vironments do not provide direct connection between function
run-times [2], we used a dedicated cloud instance to serve

1https://github.com/kmu-bigdata/serverless-faas-workbench



TABLE I: Workloads in FunctionBench

category name amount of loads input outputCPU Memory Disk I/O Network

Micro
benchmark

float high high - - JSON (argument) JSON (argument)
matrix multiplication high high - - JSON (argument) JSON (argument)

linpack high high - - JSON (argument) JSON (argument)
dd medium medium high - value (argument) file (local block storage)

iperf3 low low - high - -
cloud storage low low medium high file(shared block storage) file(shared block storage)

Application image processing medium medium low low image (shared block storage) image (shared block storage)
video processing high high medium medium video (shared block storage) video (shared block storage)

ML Model
Training

featurization high high medium high text data (shared block storage) text data (shared block storage)
logistic regression high high medium medium text data (shared block storage) model (shared block storage)

ML Model
Serving

face detection medium medium medium medium video (shared block storage) video (shared block storage)
logistic regression medium medium low low text data (argument) JSON (argument)

CNN (image classification) medium medium low low image (shared block storage) JSON (argument)
RNN (words generation) low low low low JSON (argument) JSON (argument)

as a server where a function run-time can initiate a direct
connection.

Application To represent real-world applications, we added
an Image Processing workload, which performs image trans-
formation tasks using Python Pillow library. In the workload,
it fetches an input image from a shared block storage and
applies ten different effects to it. The outputs are uploaded to
a shared storage. The workload imposes a medium degree of
CPU/memory for the image transformation and low degree
of network and disk IO overhead to download an input
image, upload output images, and store temporary files during
computation. The Video Processing workload applies gray-
scale effect from the OpenCV library to a video input and
uploads the transformed video to a shared storage.

ML Model Training Despite the growing popularity of
the FaaS execution model, most application scenarios are
constrained by the orchestration of many cloud service compo-
nents and some embarrassingly parallel processing jobs [2]. To
extend the application scenarios, the FaaS execution run-time
needs to be machine-learning jobs friendly. Furthermore, to
create new possible application of the service, we introduce a
few data mining tasks in FunctionBench. In a machine learning
job, raw input data generally needs pre-processing to prepare
the input as features for training. In the featurization workload,
we use Amazon Fine Food Review2 text dataset assuming
that each review is transformed into a TF-IDF vector, which
becomes an input to a regression model. Though the maximum
input dataset size that can be executed varies according to the
configured memory size, this workload has the largest input
size for processing and incurs high network overhead. To run
the workload on a FaaS environment with different RAM
configuration in parallel, we partition the input dataset into
various sizes. Also, to calculate a global TF-IDF vector from
partitioned input datasets, multiple invocations of the function
are necessary for parallel processing and aggregation. Public
cloud service vendors provide a function orchestration feature
(e.g., AWS Step function, Microsoft Azure Logic Apps), and
we utilized them in the workload.

Using the outcomes of the featurization workload, the

2https://snap.stanford.edu/data/web-FineFoods.html

modeling workload applies the logistic regression algorithm
to build a model that predicts reviews’ sentiment scores by
using the Python scikit-learn package. The ML Model Training
workloads need to access large-size datasets that are available
in a shared block storage; moreover, these workloads are
generally CPU, memory, and network intensive.

ML Model Serving After building a model, it has to be
served for arbitrary inputs to make prediction. In Function-
Bench, we provided four types of inference scenario. First,
the face detection uses the CascadeClassifier to annotate faces
in a video stream utilizing the OpenCV library. In the logistic
regression workload, we utilize a model built in the ML model
training step, and it takes users’ review text and predicts the
sentiment score.

To provide a deep learning model inference, we added an
image classification model of SqueezeNet [3], which achieves
an impressive accuracy on an ImageNet with 50x fewer
parameters than the state-of-the-art model. It is implemented
with Python Tensorflow Keras. Attempts to import other CNN
models on function run-times proved abortive due to limited
memory size. Considering that the cost of using function ser-
vice is proportional to the RAM usage, using a compact model
with less RAM usage is recommendable in running the service
on a FaaS execution environment. We also added a words
generation model using a RNN implemented with PyTorch.
Overall, the ML Model Serving workloads impose relatively
lesser resource usage overhead than training workloads.

III. EVALUATING WITH FUNCTIONBENCH

We run the proposed FunctionBench on various cloud
computing services. We upload all source codes customized
for different cloud services to the public website. It should be
noted that the purpose of the experiments is not to compare the
performance of various cloud function services, but to present
the applicability of the proposed workloads.

Figure 1a and 1b respectively shows the latency to complete
video processing and model serving workloads on AWS,
Google, and Microsoft cloud services. It is well-known that
the cost of using function services is proportional to the
allocated memory size and running-time; moreover, we assume



128MB 256MB 512MB 1024MB 2048MB 3008MB
memory size

0

5

10

15

20

25

30

35
la

te
nc

y(
se

c)
aws lambda
google cloud functions
azure functions

(a) video processing

128MB 256MB 512MB 1024MB 2048MB 3008MB
memory size

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

la
te

nc
y(

se
c)

aws lambda
google cloud functions
azure functions

(b) model serving

D-10M
M-128MB

D-25M
M-256MB

D-50M
M-512MB

D-100MB
M-1024MB

D-200MB
M-2048MB

D-300MB
M-3008MB

memory / dataset size

0

50

100

150

200

250

300

la
te

nc
y(

se
c)

400
MB

470
MB

650
MB

900
MB

1500
MB

2000MBaws lambda
google cloud functions
azure functions

(c) model training - weak scalability

Fig. 1: Evaluation of FunctionBench workloads on various cloud services

users understand different behaviors of cloud services. In the
experiment, we vary the allocated memory size of the function
run-time, which is shown in the horizontal axis. In contrast to
AWS and Google cloud service, users cannot set memory size
in the Microsoft cloud service; hence, we show the latency of
Microsoft service only at the pre-configured 2GB memory bar.
Missing bars in the figures indicate that the cloud service could
not complete the given workload with the allocated memory
size (with the exception of Microsoft).

According to cloud service providers, configuring more
RAM to the function run-time shortens the workload response
time; however, the ratio of improvement varies for different
providers. Comparing Google cloud and AWS, AWS shows
better performance than Google cloud overall including ex-
perimental results that are not presented in this paper due to
space limitation even when the configured RAM size is the
same. Contrary to AWS, Google cloud function service could
not complete a given task while AWS could do. However, for
model serving workloads, when Google cloud can complete
a task, it provides better performance than AWS. Different
from micro-benchmarks that exclusively evaluate different
resources, the proposed workloads utilizes CPU, memory, disk
IO, and network resources together at different degrees, as
shown in Table I. Thus, the different underlying infrastructure
configurations that are abstracted from users can impact the
overall performance. To accurately compare different function
services, we recommend that the evaluations should be con-
ducted using the realistic workloads provided in this paper.

Also, to demonstrate the weak-scalability of cloud services
for the model training workload, we increase both the input
dataset and configured memory size to measure function
response time. The horizontal axis of Figure 1c shows the
dataset size (D-) and the configured memory size (M-). The
memory size of the Microsoft function is maxed at 2GB, but
the cost is calculated based on the real usage of the memory. To
compare three cloud function services, we indicated the actual
memory usage of Microsoft function invocation on top of the
corresponding bars. As observed from the figure, based on
the performance and cost, none of the cloud function services
can be considered as the best. Users can monitor the status
of functions in order to better configure the functions. This
observation concurs with the challenges in cloud resource
configuration and necessitated autonomic configuration [7].

IV. CONCLUSION AND FUTURE WORK

We presented FunctionBench, a suite of workloads, which
targets the evaluation of various cloud function services and
new algorithms. In addition to micro-benchmarks which are
widely in-use in recent times, FunctionBench provides realistic
data-oriented applications with its source code customized
for major public cloud service vendors (AWS, Google, and
Microsoft). We are positive that this contributions would
broaden the applications areas of FaaS execution model and
facilitate research progress in the relevant fields.

Currently, FunctionBench is publicly available, and we shall
expand the workload scenarios based on the assistance and
feedback received from the research community.

ACKNOWLEDGEMENTS

This work is supported by the National Research Foun-
dation of Korea Grant funded by MSIP (No. NRF-
2015R1A5A7037615 and NRF-2016R1C1B2015135), the ICT
R&D program of IITP (2017-0-00396), and the AWS Cloud
Credits for Research program.

REFERENCES

[1] L. Feng et al. “Exploring Serverless Computing for
Neural Network Training”. In: IEEE Cloud 2018.

[2] Joseph M. Hellerstein et al. “Serverless Computing: One
Step Forward, Two Steps Back”. In: CIDR 2019.

[3] Forrest N. Iandola et al. “SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and ¡1MB model
size”. In: CoRR 2016.

[4] Youngbin Kim and Jimmy Lin. “Serverless Data Analyt-
ics with Flint”. In: IEEE CLOUD 2018.

[5] H. Lee, K. Satyam, and G. Fox. “Evaluation of Pro-
duction Serverless Computing Environments”. In: IEEE
CLOUD 2018.

[6] Edward Oakes et al. “SOCK: Rapid Task Provisioning
with Serverless-Optimized Containers”. In: USENIX ATC
2018.

[7] Myungjun Son and Kyungyong Lee. “Distributed Ma-
trix Multiplication Performance Estimator for Machine
Learning Jobs in Cloud Computing”. In: IEEE Cloud
2018.

[8] Liang Wang et al. “Peeking Behind the Curtains of
Serverless Platforms”. In: USENIX ATC 2018.


