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Abstract
Fully-managed cloud and Function-as-a-Service (FaaS) ser-
vices allow the wide adoption of serverless computing for
various cloud-native applications. Despite the many advan-
tages that serverless computing provides, no direct connec-
tion support exists between function run-times, and it is a
barrier for data-intensive applications. To overcome this lim-
itation, the leading cloud computing vendor Amazon Web
Services (AWS) has started to support mounting the network
file system (NFS) across different function run-times. This
paper quantitatively evaluates the performance of accessing
NFS storage from multiple function run-times and compares
the performance with other methods of sharing data among
function run-times. Despite the great qualitative benefits
of the approach, the limited I/O bandwidth of NFS storage
can become a bottleneck, especially when the number of
concurrent access from function run-times increases.
ACM Reference Format:
Jaeghang Choi and Kyungyong Lee. 2020. Evaluation of Network
File System as a Shared Data Storage in Serverless Computing.
In Workshop on Serverless Computing (WoSC’20), December 7–11,
2020, Delft, Netherlands. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3429880.3430096

1 Introduction
Serverless computing architecture is adopted in many cloud-
native applications. Fully managed “library” services and
FaaS are major components that make serverless comput-
ing applications feasible [3]. Fully managed library services
provide various functionalities that are essential in appli-
cations development, such as object storage, notification,
database, and HTTP web endpoint, without incurring man-
ual resource management overhead. They allow users to
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focus on core application development while providing in-
herently highly available services with auto-scaling and load-
balancing. However, most fully managed cloud services do
not allow customization, and application developers should
rely on services that are provided by vendors. FaaS can over-
come the shortcoming by allowing users to execute custom-
implemented source code on a fully managed run-time envi-
ronment.
Public cloud service vendors similarly support FaaS (e.g.,

AWS Lambda, and Google Cloud Functions). Each service
has uniqueness in the integration with the other fully man-
aged library services, function run-time management mech-
anisms [1, 16], and billing policies.
Despite the wide adoption of FaaS for serverless applica-

tion development, it has a few major limitations, such as no
peer-to-peer (P2P) communication between function run-
time support [7, 8, 12], performance variation, including the
cold-start issue [2, 6, 9, 15], no specialized hardware sup-
port [3], and a lack of generally available workloads [5, 13].
Among the limitations, the lack of P2P communication

support among function run-times is a great obstacle to de-
veloping a diverse set of serverless applications, especially
for data-intensive applications that require various commu-
nication patterns [3]. To overcome the limitation, various
object storage services have been used to store intermediate
datasets temporarily. In the cloud, users can choose a differ-
ent level of object storage service concerning price and la-
tency performance [8, 12], which uses either cheap/slow disk-
based object storage services (Amazon S3) or expensive/fast
RAM-based caching services. The current approaches sup-
port file operations within an object level, and an entire file
should be uploaded or downloaded from a FaaS run-time.
To better support data-heavy applications in serverless com-
puting, block storage services should be supported within
a FaaS run-time that allows manipulation on the byte level
within a file. With the necessity, AWS has started to support
mounting an NFS in function run-times so that they can
communicate through the file system and share data while
performing file operations on the byte level [4].

The adoption of NFS in an FaaS environment can greatly
improve the usability of the current FaaS applications by
allowing multiple functions to share states across distinct ex-
ecutions. Using a mounted disk access point from a function
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run-time, developers are expected to perform disk and net-
work I/O operations transparently without using software
development kits (SDKs) to access cloud library services,
especially for data-intensive applications. In the very early
stages of supporting NFS in FaaS, it is important to under-
stand the performance characteristics to envision a proper
architecture when developing applications using serverless
computing. To achieve the goal, we performed experiments
thoroughly using AWS Lambda with the elastic file system
(EFS) as an NFS solution. The experimental results reveal that
appropriate NFS storage bandwidths should be provisioned
to provide multiple function run-times with comparable per-
formance with an object storage service or local storage.

2 FaaS and Storage Services
Serverless computing is a cloud service execution model in
which service providers run servers and dynamically manage
the servers in the direction of maximizing resource utiliza-
tion while providing scalability and fault tolerance. Fully
managed cloud services are major components that make
serverless computing feasible. For example, AWS provides
Lambda as a FaaS to allow users to write custom source codes
and execute them on managed servers. In addition, AWS pro-
vides fully managed HTTP end-point service (API Gateway),
distributed key-value storage (DynamoDB), object storage
(S3), and many more services.

Among many fully managed services, FaaS expedites the
adoption of serverless computing for many cloud-native
applications because it provides great flexibility during the
programming phase. In AWS Lambda, an user first registers
a custom-implemented source code written in Java, Python,
JavaScript, Go, Ruby, or C#. A registered function 1 works
in an event-driven manner, and users can register various
fully managed event sources. For instance, if a function must
be invoked upon the user request, the HTTP endpoint (API
Gateway) can be registered.

During the registration, the user must determine the max-
imum memory size between 128 MB and 3008 MB that a
function run-time can use, and the maximum time a reg-
istered source code executes. The maximum memory size
is a key factor that affects the function execution time and
billing. The amount of the CPU clock is allocated proportion-
ally to the configured memory size, and the completion time
of CPU-intensive tasks is primarily dependent on the con-
figured memory size [9, 15]. Kim et al. [6, 7] discovered that,
unlike CPU resources, disk and network I/O resources are not
allocated proportionally to the memory size. However, the
proportionally allocated CPU clock affects I/O performance
and results in a performance difference. Such characteristics
are common to most FaaS vendors (AWS Lambda and Google
Cloud Function) with slight configuration differences (Azure
Functions). For local data storage, AWS Lambda provides 500

1We note the source code and function interchangeably.

MB of disk space that a function run-time can use exclusively.
An additional 250 MB of layer storage is provided to allow
function run-times to share static and read-only files, such
as shared libraries.

The adoption of serverless computing architecture is accel-
erating, but the majority of practical applications are limited
to embarrassingly parallel stateless tasks, function compo-
sitions, or cloud service orchestrations [3]. From academia,
various data-intensive serverless applications have been pro-
posed in the literature. They include machine learning and
deep learning modeling and inference, distributed linear al-
gebra, video processing, query processing, graph mining,
and many others. Due to the nature of data-heavy applica-
tions, diverse types of inter-communication among function
run-times are necessary. However, the current public FaaS
systems do not support direct connection-oriented commu-
nication between run-times, and users must rely on external
data storage services to share datasets.

To store and share intermediate datasets among function
run-times, users can rely on cloud-native services, which
are the slow and cheap disk-based object storage service
and the fast and expensive memory-based caching service.
In AWS, S3 is the cheapest option to store and share a file
object. It is a fully managed object storage service that AWS
provides with scalable and fault-tolerance resource manage-
ment. It supports object auditing via version tracking and
enhances security by supporting server-side encryption. It
integrates with Lambda smoothly in an event-driven manner.
In contrast, fully managed elastic caching services can pro-
vide similar functionality of S3 with higher cost and lower
latency. An advantage of using cloud-native data storage
services is the smooth integration with FaaS because they
provide well-established user interfaces through web and
SDKs, which developers can easily use in the FaaS source
code.
The cloud-native disk-based object storage and RAM-

based key-value storage services have distinct character-
istics regarding price and access latency. To overcome the
challenge, hybrid architecture intermediate storage services
have been proposed [12, 14]. Locus [12] proposed using slow
(S3) and fast (Redis) cloud storage together, considering the
characteristics of shuffle tasks among FaaS executions. The
fast storage service is used to process small chunks with
high IOPS, whereas the slow storage service is used to store
large chunks. Apache Crail [14] aims to act as a very fast
ephemeral data storage and sharing service. The proposed
architecture is designed from the ground up for modern high-
performance storage (NVMe SSD) and networking (RDMA)
hardware, and it can be accessed directly from FaaS run-
times. The proposed systems demonstrate superb perfor-
mance compared to cloud-native storage services, but users
mustmanually install the services to access them from server-
less applications. Furthermore, the systems support only
object-level access that can limit usage scenarios.
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Storage Type Native Speed Price Access Share Interface Boundary Persistence Event

Object (S3) Yes Slow $ Object Yes SDK Global Permanent Yes
Caching (Redis) Yes Fast $$$ Object Yes SDK Region Permanent No

High Performance (Crail) No Very Fast $$$$ Object Yes SDK Global Permanent No
Local disk Yes Fast 0 Block No POSIX Local Temporary No
NFS (EFS) Yes Fast $$ Block Yes POSIX Region Permanent No

Table 1. File storage service accessible from FaaS run-times

To widen the adoption of serverless computing for var-
ious applications, supporting P2P communication among
function run-times and block-level shared storage service is
necessary [3]. Mounting an NFS from multiple function run-
times can solve the limitation that the current FaaS systems
impose. In the context, AWS Lambda has started to support
mounting its managed NFS service, EFS [4]. The user can
easily create an EFS endpoint through the AWS web console,
CLI, or SDK. The user can mount an EFS on servers in the on-
premise data center or Amazon EC2, a computation service.
Additionally, EFS provides two throughput modes: bursting
and provisioned. In the bursting mode, the throughput of an
EFS endpoint scales with the consumed storage size and can
reach 100 MB/S per 1 TB of consumed storage. In the provi-
sioned mode, the user can purchase additional throughput
that an EFS endpoint can provide. For pricing, the consumed
storage size determines the cost in the bursting mode, and
the throughput assigned by the user determines the cost in
the provisioned mode.
To use EFS within Lambda function run-times, the user

must create an EFS disk and mount the disk in the Lambda
menu. During the setup, the user can decide the mount point
path in a Lambda run-time. Within the Lambda source code,
the user can access the shared data storage using POSIX file
system APIs and perform file operations on the byte level,
which is similar to accessing the local storage disk. For other
object storage services, the developer must use specialized
SDKs to interact with external storage services with proper
access control permission. A mounted EFS disk is accessible
from multiple function run-times simultaneously sharing
available bandwidths of an EFS disk.

Table 1 summarizes the characteristics of various file stor-
age services available to function run-times whose values are
shown in the Storage Type column. The term Native indicates
whether the storage service is supported by the cloud ser-
vice vendor in a fully managed manner. For services whose
value is No for the column, users must install and manage
a cluster of machines, such as the Crail cluster. The Speed
and Price columns indicate the latency and cost of using the
storage service, respectively. The Access column indicates
the level of access that the storage service offers. The value
is either Object or Block, where object means that the file is
the smallest unit the user can handle, whereas block indi-
cates that the user can perform byte-level operations in the

file. The Share column indicates whether the storage service
allows simultaneous file operations from multiple function
run-times. The interface column shows the method through
which the function run-time accesses the storage service.
For SDK, the user can use the boto3 library in the Python
program. For POSIX, users can use the POSIX file system
APIs directly from the function source code. The Boundary
column indicates the location of function run-times and stor-
age services that can communicate without a specialized
setup. The Global value means that the storage service is
globally accessible, and the Local indicates that the storage
service is accessible only from the function run-time. The
Region value means that the function run-time can access the
storage service if located in the same region, which is a term
to group geographically separated locations used in most
cloud vendors. In most cases, users can create a specialized
setup, such as virtual private cloud (VPC) peering, to allow
inter-region communications, but it incurs complex resource
management and additional cost. The Persistence column
indicates whether the dataset stored in the corresponding
storage service is permanent or not. The Event column indi-
cates whether the storage service can generate an event to
the function run-time whenever a file-level update occurs.
We considered managed events generated from the storage
service and excluded user-implemented event notifications.

3 Evaluations
Compared to other cloud storage services presented in Ta-
ble 1, supporting NFS from the function run-time is a rel-
atively new feature, and it is important to understand the
quantitative characteristics of using NFS from the function
run-time. To achieve the goal, we evaluated the performance
of accessing an AWS EFS endpoint after mounting it in an
AWS Lambda run-time. The evaluation focuses on the file
size effect, various application scenarios, and scalability.

3.1 Experiment Environments
To evaluate the performance of NFS with FaaS, we set a test
environment using AWS EFS and Lambda. We placed all nec-
essary resources in the us-west-2 region including the AWS
S3 master location. We created EFS storage in provisioned
throughput mode, setting the bandwidth to 100 MB/S, and
we created a Lambda function mounting the EFS endpoint.
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Figure 1. AWS Lambda with EFS performance differences for various benchmarks with distinct file sizes

To make realistic workload scenarios, we used Function-
Bench [5]. Among the benchmarks in the shared repository,
we used I/O intensive workloads, dd, sequential read, sequen-
tial write, random read, and randomwrite. All workloads have
a file size and block size configuration. The file size (𝑆 𝑓 ) in-
dicates the total size on which a workload operates, and the
block size (𝑆𝑏 ) indicates the unit size of each workload where
𝑆 𝑓 ≥ 𝑆𝑏 always stands. For example, if 𝑆 𝑓 is 200 MB and 𝑆𝑏
is 2 MB, a random write workload generates 50 byte-wise
starting points spaced at 2 MB each. The workload randomly
selects a starting point among 50 values without replacement
50 times so that every byte can be written in a file of size
𝑆 𝑓 . Unlike random workloads, sequential workloads process
each block in sequential order. The dd workload reads input
data from storage and writes to a new file in the same storage
service. In the experiments, we set the target file size as 200
MB because it is the maximally available size that meets the
restrictions of components involved in the experiments (the
layer size).

3.2 Impact of Block Sizes
Figure 1 shows the latency of completing various workloads
(dd - 1a, sequential read - 1b, sequential write - 1c, random
read 1d, and random write - 1e) in the vertical axis with
differently configured block sizes shown in the horizontal
axis. The throughput value (MB/S) is written on each bar.
Random and sequential write operations have drastic perfor-
mance differences regarding different block sizes. Although
the maximum available bandwidth of an EFS disk is 100
MB/S, a single function run-time has difficulty using the full
bandwidth.

3.3 Comparing NFS with a Local Storage
To understand how NFS storage performs with FaaS, we
compared the latency of completing the aforementioned
workloads for EFS and local storage of Lambda function run-
times in Figure 2. The experiment shows the results of 2 MB
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Figure 2. Comparing performance of function local storage
under different Lambda RAM configuration with 2MB block

block sizes configured with different Lambda memory: 512
MB Lambda RAM size in Figure 2a and 2 GB Lambda RAM
size in Figure 2b. Of five workloads in 3.2, we present the
results that have stark differences across different experiment
settings. To compare the performance, we normalized the
latency of the local storage to EFS, and the throughput values
(MB/S) are shown on the top of each bar.

Comparing the two figures, EFS does not gain a perfor-
mance benefit by increasing the configured RAM size of
Lambda, whereas the benefit of local storage is noticeable.
We believe that network performance is the major bottle-
neck that determines the overall performance. This finding
supports the findings that Park et al. discovered through I/O
performance evaluation [10], which showed that increas-
ing the Lambda RAM size results in a performance gain for
the local storage I/O but did not make much difference for
network-heavy tasks. The read throughput of the local disk
is exceptionally high in some cases, and we believe that it
is due to reading from the page cache. We did our best to
avoid reading from a page cache, but it was not possible
because the current function run-time does not provide root
permission to an underlying operating system.



Evaluation of Network File System
as a Shared Data Storage in Serverless Computing WoSC’20, December 7–11, 2020, Delft, Netherlands

1 10 20 50 100 200
Number of Concurrency

0

50

100

150

200

250

300

350

400
Ex

ec
ut

io
n 

Ti
m

e 
(S

ec
)

52.0
10.8

5.7

2.3

1.0

0.5
random read

Figure 3. Evaluation of scalability of EFS with Lambda

3.4 Scalability
It is important to understand how Lambda with EFS scales as
the degree of concurrent access increases. The vertical axis
of Figure 3 illustrates the latency of accessing EFS storage
from a different number of concurrent function run-times,
which is expressed in the horizontal axis. We present the
results from a random read workload only because other
workloads show a similar pattern. A numeric value on each
bar represents the average bandwidth of the function run-
time, and the total aggregated bandwidth can be calculated
by multiplying the per function bandwidths and the total
number of concurrent executions on the 𝑥-axis. Increasing
the degree of concurrent executions results in higher latency
to complete a given workload. In the experiment, we used
the provisioned throughput of the EFS set to 100 MB/S. When
a single function accesses EFS storage, it cannot fully use the
bandwidth. As the number of concurrent function executions
increases, the total aggregated bandwidth is capped at the
preconfigured bandwidths. This experiment result implies
that users should be cautious regarding the available band-
widths of EFS storage, especially when multiple functions
are accessed. In using the bursting mode, users can calculate
the available bandwidth and bursting time from the storage
size in use. The provisioned throughput mode provides more
stable disk throughput with extra cost proportional to the
provisioned disk throughput.
To evaluate the performance effect of the limited band-

width of EFS storage in a practical workload scenario, we
performed image augmentation tasks with different image
input and output locations. Image augmentation is almost a
de-facto standard process for image classification deep learn-
ing algorithms because it improves a model’s generality by
expanding the training dataset through the transformation
of input images with various effects [11]. In the experiment,
we created a FaaS-based image augmentation environment.
Input images to be trained for arbitrary image classification

tasks are assumed to exist in shared file storage, AWS S3 as an
object storage service, or EFS. A Lambda function fetches an
input image from storage and performs five image transfor-
mation tasks (flip left-right, flip top-bottom, grayscale, rotate
90 degrees, rotate 180 degrees) in parallel using Python’s Pillow
library. After the image augmentation tasks, five different
output images are uploaded to the shared storage service
(either S3 or EFS) so that they can be used to train a model.

Figure 4 depicts the latency of completing the download
and upload steps. To compare the scalability of S3 and EFS,
we performed experiments with a different number of input
images, 10, 50, and 100, whose results are presented in Fig-
ures 4a, 4b, and 4c, respectively. A single function run-time
processes an image, and several function run-times corre-
sponding to the number of images are executed in parallel. In
each function, due to the nature of the augmentation tasks,
a download operation happens once, and an upload option
happens five times (the number of augmentation effects). To
compare the performance under different loads, we fixed the
vertical axis maximum value at 2.5 seconds.

When the number of images to process is relatively small
(10 images), the latency to complete download and upload
tasks is similar when using S3 and EFS as a storage service.
However, as the degree of parallel execution increases, the
performance degradation of EFS becomes noticeably sig-
nificant. When 100 images are processed in parallel, EFS
took an average of 1.37 seconds and S3 took 0.22 seconds to
complete the upload task. To quantitatively understand the
performance variation, we calculated the coefficient of vari-
ation (CoV). The CoV is defined as the ratio of the standard
deviation to the average. The metric presents the degree of
dispersion around the mean value. A higher value means
great variability. The CoVs of the upload task for EFS are 0.13,
0.29, and 0.41 and those of S3 are 0.31, 0.14, and 0.22 when
the number of input images is 10, 50, and 100, respectively. In
addition to the poor performance of EFS with a higher load,
the performance of EFS is not stable with multiple function
run-time access.

The poor performance of EFS stems from the limited total
aggregated bandwidth that was set as 100 MB/S in the exper-
iments. In using EFS, users can increase the throughput by
purchasing additional capacity. Contrary to EFS, the object
storage service S3 provides consistent bandwidths without
incurring additional costs of which users should be aware.

4 Conclusion and Future Work
We quantitatively evaluated the performance of using NFS
storage from multiple function run-times as a method to
share data. Despite the addressed qualitative advantages,
the available bandwidth of NFS storage can become a ma-
jor performance bottleneck when multiple functions access
simultaneously, and users should plan the bandwidth alloca-
tion accordingly, considering the application requirements.
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Figure 4. Image augmentation task in Lambda with different input/output sources with a different number of input images

Mounting NFS storage support from multiple function run-
times is a very recent feature, and we believe that the sup-
port will expand. In using NFS storage with FaaS, users can
purchase additional I/O bandwidth, and further research is
necessary to better understand the cost and performance
trade-off in the domain. The evaluations can include further
scenarios from the perspective of service vendors, workloads,
and shared storage services.
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