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Abstract—Cloud computing resources that are equipped with
GPU devices are widely used for applications that require
extensive parallelism, such as deep learning. When the demand
of cloud computing instance is low, the surplus of resources is
provided at a lower price in the form of spot instance by AWS
EC2. This paper proposes DeepSpotCloud that utilizes GPU-
equipped spot instances to run deep learning tasks in a cost
efficient and fault-tolerant way. Thorough analysis about spot
instance price history logs reveals that GPU spot instances show
more dynamic price change pattern than other general types of
cloud computing resources. To deal with the price dynamicity
of the GPU spot instance, DeepSpotCloud utilizes instances in
different regions across continents as a single resource pool.
This paper also proposes a task migration heuristic by utilizing
a checkpointing mechanism of existing deep learning analysis
platform to conduct fast task migration when a running spot
instance is interrupted. Extensive experiments using real AWS
services prove that the proposed task migration method is
effective even in a WAN environment with limited network
bandwidth. Comprehensive simulations by replaying AWS EC2
price history logs reveal that DeepSpotCloud can achieve 13%
more cost gain than a state-of-the-art interrupt-driven scheduling
policy. The prototype of DeepSpotCloud is implemented using
various cloud computing services provided by AWS to serve real
deep learning tasks.

I. INTRODUCTION

Deep learning is a field of machine learning that tries

to uncover multiple layers of non-linear hidden features in

order to build a hierarchy of features to mimic how humans’

brain works to recognize an object. Recent advancement

of compute capacity with extensive parallel execution and

improvement in the efficient algorithms make deep learning to

widen its application scenarios in various fields, such as speech

recognition, computer vision, natural language processing, and

recommendation systems.

Due to the nature of underlying neural-net algorithm of deep

learning, extracting multiple layers of hidden features requires

huge amount of compute capacity, and Graphics Processing

Unit (GPU) devices are widely used as they can provide

extensive parallelism. Some leading cloud computing service

vendors provide compute instances that have GPUs. For in-

stance, Amazon Web Service (AWS) provides G2 instances

that are equipped with GRID K520 NVidia GPU cards - 1536

cores and 4GB of on-board memory.

In AWS, users can utilize surplus of computing resources

at a lower price than a regular on-demand instance price by

exploiting EC2 spot instance. The price of EC2 spot instance

is decided based on an auction mechanism of which the

supply and demand of compute resources in a given time

window are the primary factors [2]. Despite of lower price

of spot instances, resource volatility limits their applications

to systems that have an inherent fault-tolerant mechanism or

checkpointing capability [5], [18].

Spot instances can be used to run deep learning tasks with

a lower cost of operation. It is widely believed that using spot

instance results in significant cost gain even less than 10%

of the on-demand instance price [2]. However, different from

other types of EC2 instances, GPU instances have a uniqueness

that host devices have to be physically equipped with GPU

devices. In order to present unique availability patterns of

GPU-based spot instances, Figure 1 presents the number of

interrupts per day in the vertical axis. The horizontal axis

shows different EC2 instance types. For each instance type

shown in the x-axis, the number of interrupts per day is

measured across different Availability Zones (AZs), and a box-

whisker figure is created with values of the different AZs.

To measure the number of interrupts, we set the bid price

as on-demand instance price of corresponding type [15]. In

the figure, it is observed that the mean and median number

of interrupts for the GPU spot instance are much higher

than other types of instances. In addition, the availability of

GPU spot instance is highly variable across different AZs; a

broader span of minimum, quartile, and a maximum number

of interrupts. Owing to the distinct characters of GPU-based

spot instances, running deep learning analysis tasks on the spot

instances requires extra attention and heuristics.

To execute deep learning tasks on GPU-based spot in-

stances, fault-tolerant mechanisms of existing deep learning

platforms must be revisited. Many of the existing deep learning

platforms support checkpointing of intermediate result [1],

[23], [21]. Though checkpointing allows restarting a deep

learning task from stored intermediate result, overall fault-

tolerance mechanisms of deep learning platforms are limited

comparing to other types of big data analysis platforms. For

example, Hadoop [7] and Spark [19] provide extensive fault-

tolerance mechanisms as they are intended to run on commod-
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Fig. 1: The number of interrupts per day for different EC2

instance types. The box whisker plot is created from metrics

measured from different availability zones. GPU spot instances

show a higher number of interrupts per day than other in-

stances on average. GPU spot instances also show diversity in

the number of interrupts across distinct AZs.

ity hardware where failure is norm [6], [20]. Using inherent

mechanisms, Chohan et. al. [5] and Flint [14] proposed to use

spot instances to run Hadoop and Spark tasks, respectively.

Despite of uniqueness in the GPU-based spot instances and

the limited inherent fault-tolerance mechanisms of existing

deep learning platforms, there was no prior work that thor-

oughly investigates the opportunities and challenges of using

GPU spot instances to run deep learning analysis tasks. To

address the uniqueness of GPU spot instances, this paper

first makes a comprehensive analysis about the availability

pattern and cost gain of GPU spot instances comparing to other

instance types. The analysis reveals that GPU spot instance has

much higher degree of price diversity than others.

Based on the comprehensive analysis, this paper proposes

DeepSpotCloud that exploits spot instances with GPU devices

across different continents (regions) to perform deep learning

analysis in a cost efficient way. Not being confined to resources

within a single region, DeepSpotCloud utilizes a subset of

instances across continents that are less expensive and ex-

pected to be more stable. To enhance fault-tolerance of the

proposed system when a running spot instance is interrupted,

we propose a novel architecture of lightweight task migration

using a checkpointing feature of deep learning platforms in a

WAN environment with limited network bandwidth.

Extensive simulations are conducted to evaluate the cost

gain and service availability of the proposed system by replay-

ing the spot instance price logs provided by AWS. To present

the applicability of the proposed system, DeepSpotCloud is

implemented with AWS services and TensorFlow [1]. The

implementation of DeepSpotCloud is executed on real-world

GPU spot instances while running CIFAR-10 image classi-

fication tasks using convolutional neural network [12]. The

simulation result shows that the DeepSpotCloud can achieve

13% more cost gain than a state-of-the-art interrupt-driven

scheduling policy with only marginal additional overhead due

to the task migrations. To the authors’ best knowledge, this is

the first work that proposes to utilize spot instances across

different regions with sound engineering design to handle

challenges that arise during the migration of workload across

continents.

In summary, major contributions of this paper are as follow.

• Extensive analysis of GPU spot instance uniqueness

• Using GPU spot instances across different regions when

running deep learning analysis tasks

• Proposing a lightweight deep learning task migration

method in a WAN environment

II. CHARACTERIZING SPOT INSTANCE PRICE

AWS EC2 offers various compute instances with distinct

characters (Compute-, Memory-, IO-optimized, general, and

GPU). To enhance service reliability, EC2 instance can be

deployed in data centers that are physically separated. A region

in AWS is defined as a geographic area that is physically

distant from others, such as America, Europe, and Asia. In the

same region, multiple isolated data centers exist as Availability

Zone (AZ).

AWS provides its surplus of compute capacity at a lower

price than that of on-demand or reserved instance type in

the form of EC2 spot instance. The price of spot instance

is decided based on an auction mechanism where the supply

and demand of compute resources are the primary factors [2].

To use it, a user bids for a spot price that one is willing to

pay. If the bid price is higher than the current spot price of

the requested type, a user has instances allocated and pays for

the spot price (not the bid price) in an hourly rate. When an

instance is running, if the bid price is outbid for a new spot

instance price, the instance is terminated after two minutes of

a grace period, and the output from the instance might be lost

unless the outcome is stored in a storage. Using spot instance

is known to be an economical way to utilize EC2 instances if

applications can tolerate sudden service interruption.

A. Uniqueness of GPU Spot Instance

Among many EC2 instance types, GPU instance can provide

extensive computing power for Single Instruction Multiple

Data (SIMD) tasks by utilizing many cores in parallel on a

GPU device, and deep learning platforms [1], [10], [4] can

benefit from the extensive parallelism as they generally require

huge compute capacity.

Price diversity of GPU-based spot instance: GPU in-

stances are also served in the form of spot instances in EC2,

and people generally believe that using GPU spot instance

would result in cost gain similar to that of other types of

spot instances. However, different from others, GPU instances

have a uniqueness that host devices have to be physically

equipped with GPU devices - note that other types of instances
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Fig. 2: The ratio of spot instance price to that of on-demand instance. As the color becomes darker, the spot instance price

becomes higher and closer to the on-demand instance price. GPU spot instances show darker color with more frequent changes.
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(memory-, CPU-, and IO-optimized) are equipped with mem-

ory, CPU, and disk regardless of the type. Because of this trait,

users might have a smaller pool of alternatives in choosing

instances comparing to other types of instances. In order to

present the distinctiveness of the GPU spot instance, Figure 2

shows heatmaps that visualize the price ratio of EC2 spot

instances to that of on-demand instances of different types.

The ratio is calculated by the Equation 1.

Price Ratio =
Min(Psi, Pod)

Pod

(1)

Pod and Psi means the price of on-demand and spot instances,

respectively, at the given time with the corresponding instance

types. By taking the minimum of on-demand and spot instance

price in the numerator, the ratio is capped at 1.0, and the

ratio can reflect the cost that a user pays - note that there

is no benefit of using spot instances by paying more than

the on-demand instance price with the risk of unexpected

interruption [15]. In the figure, as the color becomes darker,

the ratio gets closer to 1.0 (less cost gain). The lighter color

means the ratio is closer to 0.0 (more cost gain). The ratio

is calculated with AWS EC2 spot instance price history logs

from July 1st. 2016, and the price is sampled at the every hour

during the measurement period. The horizontal axis represents

the elapsed days since the start time. The vertical axis shows

AZs that provide corresponding instance types. The frequency

of color darkness changes (light ↔ dark) is the indication of

the price change dynamicity - change across the horizontal

direction can be interpreted as the temporal diversity while

the change in the vertical direction can be interpreted as

the spatial diversity. Figure 2a shows the heatmap of GPU

instance (g2.2xlarge). For comparison, heatmaps of Compute

(c4.2xlarge), Memory (r3.2xlarge), IO-optimized (i2.2xlarge),

and general purpose instance (m4.2xlarge) are shown in Fig-

ures 2b, 2c, 2d 2e, respectively. As shown in the figures,

spot instance price of GPU machines (Figure 2a) has more

darker spaces than others which means there is less cost gain

when using GPU spot instances. In addition to the lower cost

gain, GPU spot instance has more temporal and spatial price

diversity than other instance types.

To quantitatively evaluate the availability of spot instances,

we calculate the ratio of time when the spot price is less

than the on-demand price for various instance types. GPU

spot instances show much lower availability; between May

4th and August 2nd, 2016, approximately 35% of time, GPU

spot instance price is higher than or equal to the on-demand

price. Otherwise, general types of instances show much higher

availability; the spot price is more expensive than on-demand

price at most 5% of the time. To better understand the cost

gain of using spot instances, we calculate the cost that a user

has to pay for different instance types. For GPU spot instances,

users are expected to pay approximately 30% of on-demand

price. On the other hand, users of other instance types are

expected to pay less than 20% of corresponding on-demand

instance price at most. Overall, the quantitative analysis result

complies to the findings presented in Figure 2.

In summary, it is noticeable that GPU spot instances have

lower availability and cost benefit comparing to other types

of spot instances. Furthermore, availability and cost gain

differ quite significantly across different AZs even in the

same region. The findings in this section necessitate additional
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strategies to better utilize GPU spot instances in a stable and

cost-efficient way especially for deep learning applications.

III. SYSTEM DESIGN

As thoroughly analyzed in Section II, GPU spot instances

have uniqueness in the temporal and spatial price diversity

with a limited set of instance types in a region. Further-

more, most deep learning analysis platforms support limited

fault-tolerance features (model checkpointing) compared to

other big-data analysis platforms. Considering such aspects,

DeepSpotCloud, an orchestrator system enabling cost effective

and fault-tolerant execution of deep learning applications on

GPU spot instances, is proposed. It distinguishes itself from

other systems [14], [16], [5] by utilizing GPU spot instances

located globally across continents. There is a lower number of

instance types that support GPU capability than other general

instance types, and migrating tasks among GPU instances

located globally would increase a pool of candidate resources

to overcome the spatial diversity of price. By using globally

located spot instances, however, a task migration across conti-

nents can cause significant overhead when a running instance

is interrupted. In order to mitigate task migration overhead,

DeepSpotCloud proposes a task migration method to decrease

the data transfer overhead by using existing deep learning

platforms’ checkpointing mechanisms.

A. Task Migration Heuristics: When to Migrate

DeepSpotCloud categorizes task migration incidents into

voluntary and forced migration. Voluntary migration happens

at the service owner’s willingness to decrease operation cost

even when a service interruption event does not happen. Dif-

ferent from the voluntary migration, forced migration happens

whenever an outbid event happens and a running instance is

terminated within a short period of graceful shutdown time.

Voluntary migration has few options to decide when to ini-

tiate migration. First, BestPrice voluntary migration happens

when the spot instance price of currently running AZ is more

expensive than the lowest price AZ at the given time. This

approach guarantees a task to run in an AZ where the spot

instance price is lowest among all AZs. However, it can incur

a significant number of task migrations if price changes fre-

quently. Considering the overhead of task migration, initiating

too many migrations can degrade overall performance.

The billing period of spot instance can also be considered

to decide when to migrate a task voluntarily. Spot instance

is charged hourly-basis as long as an instance is running.

When an instance is terminated due to an outbid event, an

instance is not charged for the partial hour till the time of

interruption. However, when a user voluntarily shutdowns

a running instance, the partial hour until the shutdown is

charged as an hour. For example, if an instance runs for h

hour and m minutes, a shutdown due to an interruption will

incur h hours of usage, while a voluntary termination will

result in h+1 hours of usage. BillingPolicy-Hourly migration

approach reflects the service providers’ spot instance billing

policy to avoid unexpected partial hour charge due to voluntary

termination. He et al. [8] proposed to reflect EC2 billing policy

when making voluntary migration. However, different from

DeepSpotCloud, the authors suggested to migrate an instance

hourly whenever an interrupt event happens, and it is similar

to the forced migration method in DeepSpotCloud.

B. Task Migration Heuristics: How to Migrate

Among many advantages of executing workloads on a

virtualized environment, a live VM migration of running in-

stances allows fast recovery from abnormal incidents. Similar

to DeepSpotCloud, Kang et al. [11] propose a middleware to

perform live migration in a WAN environment of global-scale

as a solution for a disaster recovery (e.g., earthquake). Though

live migration helps to recover from some types of disasters

that might allow about 10s of minutes of migration time, the

shutdown preparation time of spot instance termination is only

a few minutes that a live migration in a global-scale cannot

complete. Xin et. al. [8] claims that it is very challenging to

complete a live VM migration even in the same region.

As the live migration cannot be a solution in global-scale,

DeepSpotCloud utilizes existing deep learning platforms’

checkpointing mechanisms. When a task migration is required,

a checkpoint operation is initiated in a running instance.

Most deep learning analysis platforms allow checkpointing

intermediate outcomes per each iteration during modeling

step, where an iteration is a unit of execution from a mini-

batch of a large input dataset. In most GPU devices, one

iteration can complete in a short time (at most few 100s of

milliseconds). Considering per iteration time, it is reasonable

to check necessity for checkpointing every iteration. After

a checkpoint file is created, the outcome is uploaded to a

permanent global storage to where a new spot instance has

access. In parallel to checkpoint initiation, a new spot instance

is started in an AZ that is predicted to be cost-beneficial. In

the new instance initiation, a VM image that is equipped with

all the necessary softwares is used to restart the task after

fetching the checkpointed outcome from a storage.

C. Task Migration Heuristics: Where to Migrate

When a task migration happens either forced or voluntarily,

choosing an AZ where a new instance is going to be launched

is crucial to provide stable and cost-efficient operation. Previ-

ous research about analyzing AWS EC2 spot instance price [2]

claims that the price change pattern of spot instances is rather

random and it is challenging to predict future price based on

the history of price change pattern. We confirmed the statement

with GPU spot instances, and DeepSpotCloud deploys a new

instance in an AZ where the current spot price is the lowest.

D. System Architecture

A high-level system architecture of DeepSpotCloud is pre-

sented in Figure 3. The core functions of DeepSpotCloud are

implemented in the spot instance orchestrator that performs

tasks of spot price monitoring, instance recommendation, and

instance arbitration. The spot price monitor periodically checks

the current GPU spot instance price across all the AZs and
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Fig. 3: System architecture of DeepSpotCloud

keeps it locally to let an instance recommender reference.

Instance arbitrator monitors the running spot instances to

check if they are interrupted. In case a task migration is neces-

sary, it prepares for task migration by initiating checkpointing

operation and starting a new instance in an AZ based on the

instance recommendation.

In Figure 3, two types of operations are marked with P and

M prefix, where P means a periodic operation while M notes

an operation when a migration happens. P-1 is an operation

that spot price monitor periodically checks the current price

of GPU spot instances and stores it locally. P-2 is another

periodic operation where the instance arbitrator checks if a

running task needs to be migrated to other AZs.

As soon as a task migration becomes necessary (M-1),

the arbitrator initiates a checkpoint operation to a running

instance (M-2). The checkpointed outcome is uploaded to a

global storage service so that a new spot instance can access

the intermediate outcome. In parallel to checkpoint initiation,

instance recommender makes suggestions about where to start

a new instance by referencing spot instance price (M-3). As

soon as the instance recommender notifies a suggested AZ (M-

4), the arbitrator starts a new instance in the recommended AZ

(M-5) with the checkpointed outcome path. As a new instance

is launched, it fetches the checkpointed outcome from a shared

storage (M-6) and restarts computation from the checkpoint.

IV. IMPLEMENTATION

To present feasibility and applicability of DeepSpotCloud, a

prototype is implemented using various AWS cloud computing

services as shown in Figure 4. This section describes the

details about the prototype implementation from the engi-

neering perspective to ensure scalability and fault-tolerance

of DeepSpotCloud. The current version of implementation is

shared in GitHub1 with a demo web-page2.

A. Virtual Machine Image

As shown in Figure 4, multiple spot instances run on

globally distributed regions. To provide an identical execution

1https://github.com/kmu-bigdata/deep-spot-cloud
2http://bigdata.cs.kookmin.ac.kr/deep-spot-cloud-demo/

environment, an Amazon Machine Image (AMI) is created

in one region with Ubuntu 14.04, NVIDIA CUDA SDK 7.5,

cuDNN library, and TensorFlow 0.1, and it is copied over to

the distant regions using copy-image feature by AWS.

B. Spot Price Monitor

Spot price monitor periodically communicates with the

AWS API service to fetch the current spot instance price in

all regions. In order to minimize implementation overhead of

DeepSpotCloud, AWS Lambda service is used to check the

GPU spot instance price. The function is triggered by Amazon

CloudWatch, enabling it to run periodically every minute.

The spot instance price is recorded to a permanent storage,

DynamodDB, only when the price has been changed. The price

history is referenced by instance recommender to suggest an

AZ to where a new instance is deployed. By storing the price

history in a separate permanent storage service, scalability and

fault-tolerance can be granted when the periodic price checker

malfunctions or price inquiry requests spike.

C. Instance Arbitrator

Instance arbitrator is responsible for the orchestration of

task migration. In order to decide whether a task migration is

necessary, the instance arbitrator relies on the EC2 instance

metadata [3]. The spot instance termination notice is provided

by the termination-time metadata, and it can be accessed from

a local HTTP web service. As soon as an instance detects

a shutdown metadata, it sends a notification to the instance

arbitrator with path information where a checkpoint outcome

is uploaded to. The instance arbitrator utilizes Amazon API

Gateway to receive an interruption notice from a spot instance.

Upon getting an interruption notice, another AWS Lambda

function is invoked to start a new spot instance in another AZ

suggested by the instance recommender.

When starting a new instance, the instance arbitrator passes

a script to be executed after a new instance starts. Information

about a deep learning task and the location of checkpointed

outcome is passed via user-data. The start script downloads

the checkpointed outcome and starts a task written with

TensorFlow continuing from the checkpoint.

D. Instance Recommender

Instance recommender is responsible for suggesting an AZ

where a new instance is going to be launched. Based on

the previous work on predicting the price of spot instance,

using advanced predictive analysis algorithms did not help

to anticipate more stable and cost-efficient AZs [2]. Thus,

the current version of DeepSpotCloud uses the current spot

price to decide an AZ for a new instance. The dotted square

box in the right bottom corner of Figure 4 shows possible

components for the instance recommender; AWS Kinesis for

stream analysis and Amazon Machine Learning for advanced

predictive analysis. Improving the accuracy of spot price

prediction and building a system to perform the task is future

work.

102

Authorized licensed use limited to: Kookmin University. Downloaded on April 04,2022 at 04:24:29 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: Implementation of DeepSpotCloud using various AWS

services

V. EVALUATION

To analyze feasibility of the proposed task migration heuris-

tics and the performance improvement from the methods in

DeepSpotCloud, comprehensive simulations are conducted by

replaying EC2 spot instance price history.

A. Task Migration Overhead

In the forced task migration, a running spot instance has

limited time to complete checkpointing; AWS EC2 allows two

minutes before shutdown. In order to quantitatively analyze

overhead from checkpointing and confirm whether the pro-

posed mechanism can complete within the time window, task

migration overhead is measured from the perspective of time

to generate a checkpoint file and upload to a shared storage.

Figure 5 shows the latency to create and store checkpoint

files of different sizes. In the experiment, tf.train.Saver class

in TensorFlow [1] is utilized to generate a checkpoint file. The

class provides save and restore method to create a checkpoint

file and load the file to restart a session, respectively. In the

figure, the vertical axis shows the latency, and the horizontal

axis shows the checkpoint file size. The checkpoint file size

ranges from 1MB to 1GB. The checkpoint file contains weight

vectors whose dimension is dependent on the number of hid-

den layers, the number of neurons per each hidden layer, and

the number of input/output neurons. In computation of forward

and backward propagation, the entire weight vectors, input and

output dataset of mini-batch size should be loaded into GPU

device memory. In G2 family of EC2 instances, the equipped

GPU card has 4GB of device memory. Considering the input

and output dataset size, weight vectors whose size is larger

Fig. 5: Time to generate checkpoint file of different size
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TABLE I: The latency to transfer between different regions

Destination
US West US East Europe Asia

S
o
u
rc

e

US West 11.9(22.5) 20.4(37.7) 16.4(21.3) 13.3(15.5)

US East 14.4(24.7) 14.8(31.4) 12.9(14.4) 16.6(20.8)

Europe 18.1(24.7) 24.1(37.9) 10.0(10.8) 22.3(24.8)

Asia 13.8(16.2) 27.5(47.0) 21.0(10.8) 10.2(11.7)

than 1GB is not feasible to be handled in the G2 instance,

and the experiment was conducted with up to the size. When

storing a checkpoint file in an EC2 instance with EBS storage,

one should be aware that the file system is connected through

network, and the latency to store a checkpoint file can be

prohibitive occasionally due to network instability. To deal

with this issue, in the experiment, the checkpoint file is stored

in the memory mapped file region (/dev/shm/ ). Considering the

checkpoint file size and criticality of checkpoint completion

within a given time window, generating checkpoint file in a

RAM disk region is a sound engineering choice.

From the figure, it is observed that a task of storing

checkpoint file completes within five seconds, and it does not

pose a significant impact to complete a task migration within

the graceful shutdown period.

To complete a checkpoint process, the checkpointed file

must be uploaded to a shared storage. DeepSpotCloud pro-

poses to utilize AWS S3 as a shared storage service. When

creating a S3 bucket, a user has to choose a region to locate

a bucket. As the S3 bucket and DeepSpotCloud GPU spot

instances can be located in any region, the checkpoint file

upload latency is measured from all possible combinations of

source and destination regions across continents with 1GB of

checkpointed file. The average and maximum upload latency

that is calculated after running each combination 100 times

is shown in Table I. It is observed that uploading 1GB of

checkpoint file takes in the order to 10s of seconds on average.

The maximum latency was observed when uploading from

Asia to US East region that takes 47 seconds.

Based on the experiments of checkpoint file creation and
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TABLE II: The time to start spot instances across regions (sec)

Metric Min 1

4
Qu. Median Mean 3

4
Qu. Max

Latency(secs) 86.5 96.5 110 121.6 126.6 242.9

upload latency, two minutes of graceful shutdown period is

enough to complete the checkpointing. Of 100 experiments, all

the checkpointing operations complete within one minute even

when a checkpointed weight vector is almost the maximum

size that can be handled in the current G2 instances.

A new spot instance start time is another factor that deter-

mines task migration overhead. In DeepSpotCloud, as soon

as a task migration is scheduled, checkpointing intermediate

result and a new instance initiation happen in parallel. As

soon as both checkpointing and new instance initiation have

completed, a migrated task resumes execution; thus, the total

delay is dependent on the one that takes longer. Table II shows

the distribution of latency to start a g2.2xlarge spot instance

in Europe, US East, US West, and Asia Pacific region. The

instance initiation experiments are conducted 130 times with

10 minutes apart per each test. The time for new spot instance

acquisition is measured from the spot request initiation to user-

script invocation time; user-script is passed in a spot request

and invoked after completion of instance booting. As shown

in Table II, on average and 75% of time, approximately two

minutes are expected to take when starting a new GPU spot

instance. From the overhead experiments, it is observed that

the delay from task migration is mostly dependent on the new

instance start time as both tasks are executed in parallel.

B. Migration Heuristics

DeepSpotCloud proposes few heuristics when to migrate

a task - forced migration when an outbid event happens

(interrupt), price-driven migration that always runs a task on

the cheapest instance at the given time (best-price), and billing

policy-based migration that reflects billing policy of EC2 spot

instance (hourly). To evaluate each policy, we implement a

simulator that replays EC2 spot price history of GPU instance

(from May. 2016 to Nov. 2016). To mimic a realistic deep

learning analysis tasks, we generate workloads that run for

multiple iterations with different total running time (four

hours, one day, three days, and one week). To realistically

replay overhead from task migration, we used checkpoint

latency and instance start time that is measured in a real EC2

environment. 1,000 simulations are conducted with randomly

selected job start time and different total running time. The

result is normalized to the value of interrupt policy, a state-

of-the-art task migration method utilized in He et al. [8]

Figure 6a shows a normalized cost with different total

running time. The best-price policy incurs the most cost (five

times more than the base policy). best-price policy invokes

a task migration whenever a region with the lowest price

changes, and it incurs so many migrations that result in higher

migration cost. Note that EC2 charges a fraction of hour

usage (even few minutes) as a full hour in case of voluntary

termination. Regarding hourly policy, it saves approximately

Fig. 6: Evaluation of task migration policy
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13% comparing to the base policy as the total task running

time gets longer. The interrupt policy makes the least number

of task migrations only when necessary, and it does not have

much impact on the overall cost when the task running time

is short (four hours). However, as the total task running time

gets longer, the impact of not using cheaper instance timely

becomes noticeable.

Figure 6b shows the normalized total running time with a

base line policy of interrupt. As a task migration happens,

task execution is paused to create a checkpoint image and

start a new spot instance. Though hourly policy incurs more

number of migrations than interrupt policy and results in less

cost (Figure 6a), the impact to the overall task running time

is marginal; at most 1% of total running time is increased.

The results present that the proposed voluntary task mi-

gration mechanism (BillingPolicy-Hourly) achieves noticeable

cost gain while incurring only marginal additional task running

time. Cost savings of DeepSpotCloud comparing with that

of on-demand instances from real-world deployment can be

found on a demo website.

VI. RELATED WORK

In the context of using spot instances for big-data process-

ing, SeeSpotRun [5], Flint [14], and TR-Spark [17] propose

to run Hadoop or Spark on spot instances. They focus on

heuristics of handling an unexpected interruption due to an

outbid event. The mechanisms proposed in the research utilize

inherent fault-tolerance mechanisms of Hadoop and Spark

(automatic task re-execution and RDD lineage) that are not

supported by most deep learning platforms. SpotCheck [16]

and He et al. [8] propose to utilize various types of spot

instances as a single derivative resource pool. They propose a

fast VM migration method to deal with an outbid event. The

proposed methods target general types of instances on a same

region. As discussed in this paper, GPU spot instances have

unique characters with respect to the availability and price

change pattern, and the proposed methods are not directly

applicable to GPU spot instances. The authors also claim

that using spot instances across regions is challenging and

remaining work. Characteristics of spot instances are well
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studied in literature Zheng et al. [22], Sharma et al. [15],

Javadi et al. [9], and Ben-Yehuda et al. [2]. They focused

on analyzing all types of spot instances but could not uncover

uniqueness of GPU spot instances.

VII. CONCLUSION AND FUTURE WORK

This paper presents DeepSpotCloud, a novel approach to

utilize GPU spot instances in a cost efficient way to execute

deep learning workloads. Based on thorough analysis about

spot instance price of various types, we discovered that GPU

spot instances have uniqueness in the price change pattern -

temporal and spatial diversity. To deal with the diversity and

a limited number of GPU instances, DeepSpotCloud proposes

to use GPU spot instances across continents. This paper also

presents a task migration method when a spot instance is

interrupted. Evaluation of the proposed task migration method

using real AWS cloud computing services confirms that two

minutes of shutdown preparation time is enough to complete a

task migration even in a WAN environment. Extensive simula-

tions conducted by replaying EC2 spot instance price history

logs reveal that a proposed BillingPolicy-Hourly migration

heuristic achieves 13% cost gain while incurring marginal

task migration overhead. The prototype of DeepSpotCloud is

implemented using various AWS cloud computing services

and shared in GitHub.

DeepSpotCloud currently uses only the most recent price

to select the optimal AZ to deploy a new instance. Advanced

predictive analysis can be applied to predict more cost effi-

cient and stable AZs. The current version of DeepSpotCloud

supports a deep learning task that runs on a single GPU

instance, and we are working on applying DeepSpotCloud on

a distributed deep learning analysis platforms with multiple

workers in distinct regions that utilize a parameter server [13].

In such scenario, task migration heuristics need to be further

improved to handle a task with larger model size.
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