
CNN Training Latency Prediction
Using Hardware Metrics on Cloud GPUs

Yoonseo Hur
yoonseo@kookmin.ac.kr

Computer Science. Kookmin Univ.
Seoul, South Korea

Kyungyong Lee
leeky@kookmin.ac.kr

Computer Science. Kookmin Univ.
Seoul, South Korea

Abstract—Convolutional neural network (CNN) models are
becoming larger and more sophisticated over time, and training
requires a significant amount of time and computing resources. To
meet computing demand, graphics processing units (GPUs) are
widely used for training. Due to the excessive cost and overhead
of maintaining a GPU cluster, users may prefer to use GPUs
provided by a public cloud vendor rather than creating their own
servers. The initial cloud service is offered in the Infrastructure-
as-a-Service (IaaS) model. As the cloud evolves, the abstraction
level of the public cloud service becomes higher, and serverless
computing is considered the next-generation cloud service. In
the new way of offering cloud services, vendors are required
to provide an efficient environment for diverse workloads. To
meet the new requirement of the evolving cloud service, this
paper proposes heuristics to predict the training latency on
various GPU devices without using model information to help
cloud-service vendors prepare an efficient training environment
with minimal exposure to users’ model architectures. Unlike
previous work that relies on internal model details for latency
prediction, the proposed system uses only the hardware metrics
that are extracted during training. Using the information, we
first propose an algorithm to detect an epoch period that we aim
to predict. The detected epoch period becomes the target latency
to predict, for which we apply a stacked regressor to achieve
superior prediction accuracy. Detailed experiments revealed that
the average prediction accuracy of the proposed training latency
prediction model is 15.14%, which is similar to the state-of-the-art
approach that references the internal architecture of the model.
Unlike previous work, the proposed work does not reference the
model’s internal architecture, which proves the applicability of
this proposed work in the next-generation cloud service.

Index Terms—CNN training, performance model, GPU, cloud
computing

I. INTRODUCTION

Recent advances in artificial intelligence have increased the
prevalence of CNN [1] in a multitude of disciplines. The huge
massive requirement for computing power and the increasing
intricacy of CNN models indicate the superiority of GPUs that
are specifically designed for parallel processing over CPUs for
training. Given the financial and operational overhead associ-
ated with establishing a personal GPU training environment,
there has been a discernible shift towards cloud services.
Using cloud services facilitates an effortless environment setup
tailored to user specifications, offering cost efficiency, as
users are billed based on their consumption. Leading cloud
platforms, such as Amazon Web Services (AWS), Microsoft
Azure, and Google Cloud Platform (GCP), offer a multitude of

services. Due to the vast array of services provided by in the
cloud, users often find themselves at a crossroads, deliberating
which platforms, instance types, and services to choose.

Cloud computing services are developing in the direction of
hiding complex service management with a higher degree of
service abstraction. This evolution is represented by the devel-
opment of serverless computing, which reduces the overhead
of developers in building highly available systems [2]. The
main components of serverless computing are various fully-
managed services in which the service provider is responsible
for choosing appropriate instance types and scaling decisions.
To provide a higher degree of service abstraction layer, cloud-
service providers should be able to choose optimal instance
types for various implementations of deep neural network
(DNN) models to provide an efficient serverless DNN devel-
opment environment.

In the literature, many studies have proposed heuristics to
predict latency when a model is trained on GPUs [3], [4], [5],
[6]. All previous work has relied on the internal model archi-
tecture or profile output during the training phase to model
training latency. Although previous work has shown decent
prediction accuracy that has less than 10% mean absolute
percentage error (MAPE), it is not feasible to apply these in
a new public cloud service model. Previous methods require
the help of users to provide an optimal environment, either
by providing the source code of the model architecture [3],
[7], [4] or profiling the output during training [5], [6]. The
service provider and the consumer of the public cloud service
are different, and most users are hesitant to provide highly
confidential and private asset information to a service provider.

This paper proposes an algorithm to predict the training
latency of various CNN models on cloud computing GPU
instances using only metrics extracted from the hardware
to minimize the users’ help. This unique approach allows
cloud vendors to suggest the most cost-effective and time-
efficient environment without referencing the internal model
architecture or profile results of a model.

The proposed system consists of two primary sections. First,
we propose heuristics to detect the train epoch period from
hardware metrics. Based on the detected epoch period, we
design a model to forecast latency on various GPU instances
using dynamic and static metric information as model features.
A thorough evaluation reveals that the average MAPE of the



GPU Instance on Cloud Services

GPU Characteristic Cloud Instances

GPU Releasd Date CC1 GPU Core FLOPS (FP32) AWS Azure IBM GCP Alibaba

K80 2014.11 3.7 2496 4.113 P2 NC-series O
M60 2015.08 5.2 2048 4.825 G3s NV-series
P100 2016.06 6.0 3584 9.526 NCv2-series AC1 O gn5

P4 2016.09 6.1 2560 5.704 O gn5i
P40 2016.09 6.1 3840 11.76 ND-series

V100 2017.12 7.0 5120 14.13 P3 NCv3-series AC2 O gn6e,gn6v
T4 2018.09 7.5 2560 8.141 G4dn NCasT4 v3-series O gn6i

A100 2020.05 8.0 6912 19.49 P4d ND A100 v4-series O gn7e,gn7
A10 2021.04 8.6 9216 31.24 NVadsA10 v5-series gn7i
A10g 2021.04 8.6 9216 31.52 G5

L4 2023.03 8.9 7680 31.33 O
1Compute Capacity

TABLE I: Specification of different GPU Instances on Cloud Services

T4(AWS) A10g(AWS) V100(AWS) A10(Alibaba) A100(GCP)0

2

4

6

Re
la

tiv
e 

La
te

nc
y CIFAR10_CNN

VGG16

(a) Normalized latency to train a model

T4(AWS) A10g(AWS) V100(AWS) A10(Alibaba) A100(GCP)0

2

4

6

Re
la

tiv
e 

Co
st

CIFAR10_CNN
VGG16

(b) Normaized cost to train a model

Fig. 1: The relative latency and cost to train different models.
The lower values are better.

epoch-detection module is 9.6% and that the average MAPE
of the latency prediction of various GPUs is 11.7%, similar to
the prediction accuracy of previous work that references the
internal model architecture. The decent prediction accuracy of
this proposed system without using the model source code or
model profile output presents the applicability of this work
in a public cloud to provide an optimal training environment
without the help of users.

The major contributions of this paper are as follows:

• Epoch period detection using dynamically changing hard-
ware metric

• Creating a predictive model using hardware metric infor-
mation without the internal model architecture

• Implementation of automatic various hardware metric
gathering module

II. TRAIN LATENCY ON DIVERSE GPUS ON CLOUD

Due to the nature of CNN training, which requires a
significant amount of computing power in parallel, GPUs are
widely used for training. The prohibitive cost of a cluster of
GPU devices and the difficulties of maintaining it motivate
algorithm developers to conduct training in the cloud, where
GPU devices are provided with an on-demand billing model.
Table I lists the GPU models currently offered by cloud
providers, including AWS, GCP, AZURE, IBM, and Alibaba.
The table encompasses GPUs from the earliest K80 to the
latest L4 models. Notably, newer GPUs do not necessarily
equip more GPU cores despite their elevated computing ca-
pacities and floating-point operations per second (FLOPS).
Additionally, the value of FLOPS does not increase linearly
with the recency of the GPU release date. With the expanding
diversity of GPU instances and their features, merely assessing
GPU specifications may be insufficient for users to gauge the
most efficient option. Furthermore, different cloud vendors
have diverse GPU models, and a specific model may not be
offered by a user’s primary cloud service provider, which could
urge a user to set up a multi-cloud environment where service
operation can be very challenging [8], [9].

Figure 1 compares training time and cost to demonstrate the
variability in performance when training a model using various
GPUs. In the experiments, we train multiple layers of the
CNN model [1] with the CIFAR10 dataset (which we call CI-
FAR10 CNN) and VGG16 [10] using various GPUs provided
by AWS, Alibaba, and GCP, presented on the horizontal axis.
Figure 1a compares the latency to train an epoch. The vertical
axis displays the relative latency normalized to the best-
performing instance type in each model. The best-performing
GPU type of CIFAR10 CNN and VGG16 is marked with
a star and a triangle symbol, respectively. Different GPUs
perform best for distinct models, and the relative latency is
different for the model and GPU combinations without any
pattern.

In the cloud, cost engineering is a critical process, and



Fig. 2: The overall architecture of proposed training time prediction system relying on hardware metrics

Figure 1b compares the cost of training different models.
Similarly to the latency distribution, the two CNN models
had distinct cost-effective GPUs. The most cost-effective and
fastest training GPUs are different, and the latency and cost-
changing patterns are not intuitive if we consider only the
hardware specifications summarized in Table I. Such distinct
patterns can impose a significant burden on algorithm develop-
ers when building an optimal environment using cloud GPUs.

Suppose that one can accurately estimate the training time
in diverse environments using distinct GPUs. In that case, it
becomes relatively more straightforward to build an optimal
training environment, because the cost to maintain a cloud
GPU cluster can be calculated by the posted instance price. In
the literature, to help build an optimal training environment,
Paleo [3] employed an algorithm to predict the training time
considering the model architecture, the size of the data set, the
FLOPS of the GPU, and the bandwidth. Similarly, MLPredict
[4] and Habitat [6] predict training times for various DNN
models using model architecture and GPU hardware data, in-
cluding detailed model information, such as the kernel size and
input padding. Srifty [11] proposed a performance prediction
model for multi-GPU distributed cloud systems using model
and profile data.

Although the mentioned work accurately predicted the
training time on GPU devices, all algorithms reference the
internal model architecture to build a latency prediction model.
These approaches are applicable if an algorithm developer
builds and maintains the entire training environment. However,
if a user builds an execution environment in the cloud, the
circumstances change. In the initial cloud-service offering,
represented as IaaS, users have flexibility in the environment
setup. However, as the cloud computing service evolves, the
abstraction layer of computing services increases, and building
an optimal environment becomes the role of service providers,
not the algorithm developers. In many cases, the model source
code or internal architecture is confidential to an individual or
an institution, and the developers are not willing to provide
this information to cloud service providers merely to set up an
efficient environment. Therefore, in the context of providing an
optimal training environment in next-generation cloud services
with a higher degree of service abstraction layer, represented
as a function-as-a-service and serverless computing [12], it is
critical to predict training latency without exposing any model

details to cloud service providers.

III. FINDING THE OPTIMAL INSTANCE FOR TRAIN

To help build an optimal training environment in the next-
generation cloud, we propose a CNN training time prediction
system without reference to the model architecture. Instead,
the proposed system uses metrics collected from the hardware
that cloud service providers can typically access, such as
the cloud monitoring system, AWS CloudWatch, and Azure
Cloud Monitor. Figure 2 presents the overall sequence of the
proposed system. In the training hardware metric collection
module (Section III-A), we introduce the hardware metrics
for latency prediction and the mechanism for collecting them.
The automatic training epoch-detection module (Section III-B)
proposes an algorithm to detect the epoch based on hardware
metric changes. The detected epoch becomes the prediction
target in the training-latency prediction module (Section III-C).

A. Training Metrics Collected from Hardware

To collect effective metrics generated during the training
phase to characterize the process, we used Data Center GPU
Manager (DCGM [13]) and DeviceQuery [14]. DCGM, a
software tool provided by Nvidia, enables real-time monitoring
of various GPU metrics during training, including temperature,
memory usage, power consumption, and error status. Although
DCGM is used as a diagnostic tool that can identify and
determine the cause of GPU problems, we used it primarily
to track metrics to characterize a training task. We collect the
DCGM logs collected every 0.1 second. In this paper, not all
metrics collected from DCGM are utilized. Certain features are
excluded, specifically those that do not show any variation over
time, have identical values across all GPUs in the experiments,
or cannot be collected from specific GPUs. DeviceQuery is one
of the utility programs included in the Nvidia CUDA toolkit,
which allows users to inquire about the primary features and
capabilities of the installed Nvidia GPUs. We modified the
Devicequery.cpp file within the Nvidia CUDA toolkit to save
its output as text data for further processing. In Devicequery,
not all metrics were utilized. Those values that were identical
across all five GPUs, unsupported values, or values represented
as binary were excluded.



1) Dynamic Dataset: This section summarizes the metrics
collected to model training time. The following list presents
the metrics whose values change over time during training.

• SMACT: The average ratio of active streaming multipro-
cessors (SMs) over a user-defined period (default 1 s).

• SMOCC: The proportion of warps actively working
within an SM during a user-defined period. For example,
if 7 out of a maximum of 10 warps are consistently active
in a single SM, it yields a value of 0.7.

• DRAMA: The cycle ratio in which the device memory
is actively sending or receiving data.

• FP32A and FP16A: FP32A denotes the ratio of cycles
when the dfp32 pipe is active. A higher value indicates
increased utilization of the FP32 core. In addition, FP16A
is analogous to FP32A, differing only in the numerical
designation.

• PCIRX: The total byte count of active PCIe receiving
data, including the header and payload, including data
copied from the host (CPU) to the device (GPU).

• TENSO: The proportion of cycles during which an SM
has at least one warp assigned.

• NVLTX: The byte count of active NVLink transmit data,
covering the header and payload.

• GPUTL: GPU utilization over a user-defined period.

2) Static Dataset: The mentioned dataset changes dynam-
ically. Next, we summarize the static metrics used for latency
modeling.

• B1TTL: Total base address register (BAR1) of the GPU
in megabytes, mapping the frame buffer (FB) for direct
access by the CPU or other devices.

• B1FRE: Amount of free BAR1 on the GPU in
megabytes.

• SMMAX: Maximum supported SM clock speed for the
device.

• SHTMP: Device shutdown temperature.
• EPLMT: Effective power limit enforced by the driver,

accounting for all limiters.
• PCILW: Current PCIe link width.
• TOTAL GM: Total global memory (in megabytes) or

off-chip memory.
• CUDA CORES: Computing power. However, identical

numbers can still vary in efficiency.
• CUDA CORES/MP: Cores per multiprocessor, indicat-

ing the core count of each multiprocessor.
• GPU Max CL: Maximum clock rate of the GPU in

megahertz.
• MEM CL: Memory clock rate.
• MEM BUSWIDTH: Memory bus width in bits, indicat-

ing the number of memory input/output (I/O) lines.
• MEM SIZE: Size of the DRAM.
• TENSOR CORES: Specialized cores designed for

mixed precision training.
• L1/L2 CACHE SIZE: The L1 cache exists within each

SM and shares space with shared memory, whereas the
L2 cache is external to the SM.

Fig. 3: Change point detection sequence using Luminol

• TOTAL SMPM: Shared memory available per multipro-
cessor.

• C CK: Concurrent copy and kernel execution copy en-
gine.

• FP16, FP32, FP64 TFLOPS: Refers to 16-, 32-, and 64-
bit floating point operations per second commonly used
in computational research.

• CC: The computing capability of the GPU, defining the
supported features.

• MNG: Maximum number of resident grids per device.
• MNBWM: Maximum resident blocks, warps, and mem-

ory per SM.
• MNT: Maximum threads per multiprocessor.
• MNSM: Maximum shared memory per thread block,

measured in kilobytes.

B. Train Epoch Period Detection

The input features and target values should first be defined
to build a training-latency prediction model. Considering the
nature of the training, an epoch latency can be a good target
value, but there is no method to detect an epoch period without
referencing the source code. This section focuses on detecting
the epoch period using a metric value.

1) Change Point Detection For Epoch Discovery: To cap-
ture the transition points where epochs begin and end, we
leveraged the change point detection (CPD) algorithm. Among
many metrics, although the boundaries marking the start and
end of epochs may be visually observable in some models,
there are numerous cases where this is not straightforward.
Even when these transitions are visually apparent, generalizing
the process to an algorithm can be challenging. In this paper,



we propose the use of Luminol [15] CPD algorithm to
accurately identify these critical boundary points.

Luminol is a lightweight Python-based open-source library
for time-series data analysis that offers two primary function-
alities: anomaly detection and correlation analysis. This paper
focuses on its anomaly detection capability. Luminol assigns
a higher anomaly score to outliers in a time series and a lower
score to regular patterns. When applied to time-series data, the
Luminol approach generates a new graph that consists of only
these scores.

Figure 3 presents the general operation of Luminol, illustrat-
ing the use of two windows for comparison in a time series, the
lag and future windows. This method compares the similarity
of these two windows using a sliding-window approach to
derive anomaly scores. This computational process is referred
to as the bitmap [16]. This approach involves partitioning time
series data into segments and using the occurrence frequency
of comparable segments to assess anomaly scores. In the
bitmap detector operation of Luminol, the future window is
referred to as the lead window. The continuous data within
each window are converted into a string using the symbolic
aggregate approximation method to facilitate comparison [17].
This method divides the range between the minimum and
maximum values into categories, treating the values within
each range as identical characters. In practice, this involves
setting a specific interval in the window, calculating the
average value of the data within that interval, and converting
this average into a corresponding character based on its range.
This process effectively discretizes continuous time-series data
into a string sequence, such as aabaaca, simplifying the
comparison. Next, using the chaos game [18] representation
algorithm, these strings are converted into a n×n grid. In the
figure, a 2× 2 grid is used, where the frequency of characters
in each cell is counted and filled. For a lag window string
aabaaca, where a occurs five times and b once, the numbers
are assigned accordingly. These grids are normalized, with the
lowest value set at 0 and the highest at 1.

The anomaly score is determined by subtracting the cor-
responding values from the lag and future window grids,
squaring and summing these differences. A higher score
indicates closer proximity to an anomaly. This method allows
us to reconstruct a new graph of anomalies from the time-
series data using sliding windows. Applying Luminol, we aim
to determine an epoch transition that can be regarded as an
anomaly.

2) Smoothing Change Detection Score: Lumonol recon-
structs raw metric data into anomaly detection scores. How-
ever, due to the high variability in the changed detection
scores, using the score as an indication of the epoch period
can generate too much noise, where values around an actual
anomaly (a real epoch boundary) are also high and varying.
To solve this problem, we use the Savitzky–Golay filter [19]
to smooth the Luminol scores.

Figure 4 illustrates an example mechanism of the Savitzky–
Golay filter to smooth discrete time-series data to a quadratic
equation function. This algorithm collects data values within

Fig. 4: Graph smoothing using Savgol Filter

0 200 400 600 800

0.6

0.8

1.0

1.2

(a) Applying once
0 200 400 600 800

0.7

0.8

0.9

1.0

1.1

(b) Applying three times

Fig. 5: Comparing the impact of applying Luminol and
Savitzky-Golay multiple times

a specific range, creates a new regression function, and
replaces the original values with those derived from this
regression function to smooth the data effectively. First, we
must generate a regression function using the data within
the window. The least square principle, minimizing the
difference between the smoothed regressor output and the
real data, is used to determine the polynomial coefficients.
For example, we consider data points within a window of
(−4, d0), (−2, d1), (0, d2), (2, d3), (4, d4) and a second-order
polynomial function f(x) = a0+a1x+a2x

2. We use the least
square principle [a0−4a1+16a2−d0]

2+[a0−2a1+4a2−d1]
2+

[a0−d2]
2+[a0+4a1+16a2−d3]

2+[a0+4a1+16a2−d4]
2

to determine the coefficients to minimize the output, which is
the regression error. This result is transformed into a matrix
equation A · a = d. By adding AT to simplify the calculation,
we solve for a in (AT · A) · a = AT · d, determining the
coefficients of the polynomial. The input value at each point
is replaced by the polynomial value, smoothing the data.

3) Train Epoch Period Detection: To detect a training
epoch period using Luminol and the Savitzky–Golay filter, we
mark the peak point in the processed data as a separate epoch.
In the detection, we repeat a set of Luminol and Savitzky–
Golay filters three times to improve the detection accuracy.
Repetitively applying the combination is necessary because
a single execution is not sufficient to smooth the data for
peak value detection adequately. The rationale for combining
Luminol with smoothing, rather than just repeating smoothing
three times, is that continuous smoothing alone can obscure
peak values, making them difficult to distinguish. Applying
both techniques together in each set is crucial to preserve
the distinctiveness of the peaks while smoothing. We detected
spikes in the processed data using the find peaks function from



0 20 40 60 80 100 120
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

(a) DRAMA Dynamic Data

0 20 40 60 80 100 120
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) Anomalies Detected with Luminol and Savgol Filtered Data

0 20 40 60 80 100 120
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(c) Anomalies Detected Using Rupture

0 20 40 60 80 100 120
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(d) Anomalies Detected Using jenkspy

Fig. 6: Visual comparison of the proposed train epoch detec-
tion algorithms with other well-known change point detection
algorithms

SciPy’s signal processing module [20].
Figure 5 compares the detection of the maximum value

when applying Luminol and Savitzky–Golay filters just once
(Figure 5a) versus three times (Figure 5b) to visually inspect
the performance of the proposed heuristic. The figures demon-
strate that applying the combination once does not sufficiently
smooth the data and generates too many peaks with poor
detection accuracy. We empirically verified that applying the
combinations more than three times neither harms nor benefits
the detection accuracy.

Figure 6 visually compares the results of the proposed epoch
detection mechanism and other well-known CPD algorithms.
Figure 6a presents the original DRAMA data collected during
training. The results of applying three sets of the proposed
Luminol and Savitzky–Golay filter combination are depicted
in Figure 6b. Figure 6c illustrates the epoch detected using
the Rupture CPD algorithm [21], and Figure 6d employs
the Jenkspy CPD algorithm [22]. In each figure, the vertical
dashed lines represent the detected epochs. The proposed
method using the Luminol and Savitzky–Golay filters effec-
tively reconstructs the graph and accurately identifies the major
peaks, leading to accurate train epoch detection. The Rupture
CPD algorithm tends to detect small peaks, but its main

drawback is that it requires a definition of user-specified peak
counts, which can be a significant limitation. The Jenkspy al-
gorithm failed to detect the training epoch accurately. Jenkspy
tends to detect outliers within a small range rather than
significant changes in the DRAMA dataset. Consequently, it is
highly effective in identifying minor variations within a limited
scope. However, it is not well-suited for detecting major trends
or significant changes within the overall flow of data. The
proposed approach that uses a combination of Luminol and
the Savitzky-Golay filter consistently presents good predictive
accuracy with minimal deviation, and this comparative accu-
racy is discussed quantitatively in the evaluation section.

C. Train Epoch Latency Modeling

With the detected epoch using hardware training metrics,
we built an epoch training-latency prediction model. This
section describes how the input features and target values are
constructed from hardware metrics.

1) Defining Input Features: To use the gathered training
metrics as the model input features and target latency for
prediction, they must be pre-processed. First, the diverse and
dynamic data set whose value changes during the training
phase must be aggregated to use the metrics as features.
For aggregation, we extracted the distribution of each metric
(mean, median, minimum, maximum, quartiles, and standard
deviations) within the expected epoch. We did not aggregate
the static data, using them raw. To use the static and aggregated
dynamic dataset as input features to express the relationship
between the source and target GPU instances, we used the
ratio of the static dataset value between the source and target
GPUs as input feature. In addition, the detected epoch latency
is also added to the input feature. The target latency to predict
is the model training time on a target GPU.

Figure 7 shows an example of building input features and
target values. The aggregated dynamic dataset and the static
raw dataset with the detected epoch latency are summarized
in the left part of the figure. The aggregated dataset is
transformed into the input of the prediction model on the right.
In the input of the prediction model, the source and target
GPUs are first defined. The aggregated dynamic metrics of the
source GPU are used as the input feature X. The hardware-
related static dataset is added as the ratio value to express the
relationship between the source and target instance types. For
example, if the source GPU is V100, and the target GPU is
T4, the CUDA cores feature is expressed as 5120

2560 , which is the
fraction of the CUDA cores from V100 to T4. The detected
epoch latency on the source GPU is added to the input feature.
The epoch latency on the target GPU is defined as a target
value, Y.

2) Modeling Using Stacking Regressor: Using the proposed
features, we built a training-latency prediction model by apply-
ing a stacking regressor heuristic [23]. Stacking is a prediction
method that uses the predictions of various models as training
data for a final model. The stacking model is divided into base
regressors and a meta-regressor. In the stacking model, the
predictions of each base regressor are used again as training



Fig. 7: Reconstructing training data, including the previously obtained epoch latency, for the purpose of training model

Fig. 8: The composition of training latency prediction model
adopting the stacking regressors

MNIST
_CNN

CIFA
R10

_CNN

Re
sN

etS
mall

LeN
et5

Re
sN

et3
4

VGG13
VGG19

Re
sN

et5
0

Re
sN

et1
8

Inc
ep

tio
nV

3
VGG11

Inc
ep

tio
nR

esN
etV

2

Mob
ileN

etV
2

VGG16
0

2

4

6

8

10

12

M
AP

E

Fig. 9: Model-wise accuracy when comparing epoch latency
using only hardware data

data. In this paper, the base models are the random forest [24]
and categorical boosting (CatBoost) [25] methods. The random
forest is an ensemble method that uses decision trees as its
base model. It involves creating multiple decision trees and
considering their results collectively to reach a conclusion. The
second base model, CatBoost, is an efficient machine learning
algorithm optimized for categorical data processing based on
gradient-boosting decision tree ensembles.

The predictions from these base models are used as training
data for the meta-regressor model. This paper applies the Hist-
GradientBoosting regressor model [26] as a meta-regressor,
which uses histogram-based gradient boosting, providing high
speed and efficient memory usage in large datasets. Figure 8
illustrates the structure of the stacking regressor model in this
paper.

25 40 55 70 100
Threshold

0

20

40

60

M
AP

E

0.4

0.6

0.8

R2

Fig. 10: Optimal criteria for smoothing based on dividing the
entire data by a specific number in the savgol filter

GPU T4 A10g V100 A100 A10

Cloud AWS AWS AWS GCP Alibaba

MAPE 11.66 7.59 10.59 9.51 8.66
R2 0.93 0.91 0.96 0.93 0.93

TABLE II: Accuracy of predicting epoch latency based solely
on hardware data, grouped by GPU

IV. EVALUATION

This section, we evaluates the precision of the proposed
system with overhead to maintain the system.

A. Experiment Setup

This study uses five GPU instances for evaluation. From
AWS, we used three GPUs: the A10g GPU from the g5
instance, the T4 GPU from the G4dn instance, and the V100
GPU from the P3 instance. Additionally, we employed the
A100 GPU from GCP’s A2 instance and the A10 GPU from
Alibaba Cloud’s gn7i instance to gather data across a broad
spectrum of cloud platforms. During the training phase, we
employed the AWS Deep Learning AMI environment, specifi-
cally tailored for deep learning. A consistent environment was
maintained across GCP and Alibaba Cloud for uniformity.

For the experiments, we applied a variety of CNN
models, including VGG19, VGG16, VGG13, VGG11,
MobileNetV2, InceptionV3, InceptionResNetV2, ResNet50,
ResNet34, ResNet18, ResNetSmall, LeNet5, CIFAR10-CNN,
and MNIST-CNN. The objective is to employ models of
diverse sizes, from relatively smaller models, such as LeNet5
and MobileNetV2, to their larger counterparts, such as
VGG19. The batch sizes implemented in the experiments were
16, 32, 64, 128, and 256, while training was carried out with
input pixel sizes of 32×32, 64×64, 128×128, 224×224, and



0
True Latency (ms)

0Pr
ed

ict
ed

 L
at

en
cy

 (m
s)

(a) T4

0
True Latency (ms)

0Pr
ed

ict
ed

 L
at

en
cy

 (m
s)

(b) A10g

0
True Latency (ms)

0Pr
ed

ict
ed

 L
at

en
cy

 (m
s)

(c) V100

0
True Latency (ms)

0Pr
ed

ict
ed

 L
at

en
cy

 (m
s)

(d) A10

0
True Latency (ms)

0Pr
ed

ict
ed

 L
at

en
cy

 (m
s)

(e) A100

Fig. 11: True (x-axis) and predicted (y-axis) latencies for different source GPU devices that are shown in each sub-figure

256× 256. We trained each model by iterating 10 epochs for
each. In addition, the automated hardware model collection
system is designed to allow users to collect hardware data
during training simultaneously. We applied the MAPE, the root
mean squared error (RMSE) and R2 as performance evaluation
metrics. The R2 value measures how well a predicted value
follows the actual data. The value ranges from 0 to 1, where
a higher value indicates better regressor quality.

B. Epoch Detection Accuracy

This section validates the accuracy of the previously dis-
cussed epoch-detection heuristic. Using the DRAMA metric
collected through DCGM provided the best detection accuracy,
and we used the metric as the basis for the proposed system.
Table II presents the MAPE and R2 of the epoch-detection
heuristic measured for various GPU devices. The MAPE of the
epoch-detection algorithm measures how much the predicted
epoch period differs from the actual epoch period. Regardless
of the GPU devices, the model demonstrates good prediction
accuracy. The average MAPE is 9.606. The R2 also indicates
accurate epoch-detection quality.

Figure 9 displays the precision of epoch detection using
the categorized MAPE metric for the models displayed on the
horizontal axis. The MNIST CNN achieved the best accuracy
at 4.46, whereas VGG16 displayed the lowest accuracy at
13.1. As the size of the model increased, so did the MAPE,
but no particular model exhibited exceptionally poor results,
suggesting a consistent level of good accuracy across the
models. This result underscores the feasibility of detecting the
epoch boundary and latency solely on the basis of the DRAMA
dynamic metric.

Figure 10 presents the precision based on the number of data
points when smoothing is applied using the Savitzky–Golay
filter. The threshold signifies the total number of dynamic
data points divided by the threshold value, which is the
basis for smoothing. The bar graph represents the MAPE,
whose value is indicated on the primary vertical axis. The
star markers depict the R2 metric, whose value is presented
in the secondary vertical axis. The horizontal axis displays
the threshold. When smoothing was performed with 40 data
points, as we adopted in the proposed system, MAPE and R2

exhibited the highest precision, with a subsequent decrease in
precision as the threshold changed.

CPD Algorithm Rupture Jenkspy

MAPE 163.38 172.86

TABLE III: Comparing the epoch detection accuracy when
using well-known CPD algorithms

Source GPU T4 A10g V100 A100 A10

Cloud AWS AWS AWS GCP Alibaba

MAPE 11.67 15.82 13.77 10.50 12.89
R2 0.83 0.83 0.84 0.85 0.84

TABLE IV: Final predicted values for 1 epoch latency across
different GPUs using the predictive model

This paper proposes the combination of the Luminol CPD
algorithm and a Savitzky–Golay filter. To compare the per-
formance of the proposed algorithm, we compared MAPE
with other well-known CPD algorithms (Jenkspy and Rupture)
in Table III. Rupture and Jenkspy demonstrated an error
rate exceeding 100%, which appears to be due to significant
deviations for the DRAMA dataset. Although the presented
value is based on the DRAMA result for a fair comparison,
the model exhibited a similar error rate for other dynamic
datasets. This comparison allows us to assert the superiority
of the detection accuracy of the proposed system.

C. Target GPU Latency Prediction Accuracy

This section evaluates the accuracy of the target GPU epoch
latency prediction. Figure 11 visually presents using a scat-
terplot, with the horizontal axis indicating the actual training
latency and the vertical axis marking the predicted latency.
Points near the y = x line suggest accurate predictions. Each
subfigure indicates the source GPU type, and each scattered
point is the prediction of other target GPUs. The predictions
align closely with the actual CNN training times, implying
robust accuracy.

Table IV reveals that the A100 GPU has a leading accuracy
of 10.50, whereas the A10g GPU registers a less optimal value
of 15.82. However, most instances maintain MAPE values of
around 15, with all R2 values exceeding 0.8.

Table V explains the rationale for using dynamic and static
data for training. Training solely with dynamic data resulted
in a MAPE of 71.61, while using only static hardware data



Dynamic Data Static Data ALL Data

MAPE 71.61 20.1 11.7

TABLE V: Comparison of GPU latency prediction accuracy
using dynamic, static, and combined datasets.

CatBoost RandomForest HistGradientBoosting0
10
20
30

M
AP

E

Fig. 12: Comparison of performance improvement when using
a stacking regressor model over single models

yielded a MAPE of 20.01. Combining dynamic and static
datasets improved the accuracy to 11.7, stating that using
various datasets is a valid decision.

Figure 12 presents the effect of choosing a stacking re-
gression model as predictor, where the MAPE is on the
vertical axis. On the horizontal axis, a separate model is
depicted. As mentioned, this ensemble model uses predictions
from multiple base models in the horizontal axis to form a
meta-model, outperforming single base models. The proposed
stacking regression achieved a MAPE of 11.17, marking
improvements of 16.7% over CatBoost, 20.2% over random
forest, and 32% over HistGradientBoosting.

There may be a difference in latency when training is
performed with and without the metric collection module.
Figure 13 illustrates the additional latency due to the metric
collection module to observe the overhead of metric measure-
ment. In the figure, the horizontal axis indicates the model and
the vertical axis indicates the percentage of the performance
penalty. No specific model showed a significant disparity,
with an average overhead of 5.5%. This outcome does not
directly affect prediction performance; thus, overhead was not
a primary concern in this study.

D. Comparison with Other Prediction Approaches

This study aims to compare the results with previous
research on the prediction of training latency detection, specifi-
cally Paleo [3]. Paleo predicts training time considering factors
such as model architecture, training data size, GPU FLOPS,
and bandwidth. However, instead of relying solely on hardware
devices, it incorporates hardware information into the model
architecture and training data. Table VI presents a comparison
using the VGG16 model, used in both this study and Paleo.
Although the MAPE increased slightly from 10 to 15.14,
considering that the prediction is based solely on hardware
data without any model information, the discrepancy is not
considered significant. In terms of RMSE, this study exhibits
superior results with a value of 4.14, establishing its advantage
in this regard. These findings demonstrate that even without
disclosing the profiling results or the specific structure of the
model, the proposed approach can produce results comparable
to those of the leading studies.

CIFA
R10

_CNN

Inc
ep

tio
nR

esN
etV

2

Inc
ep

tio
nV

3
LeN

et5

MNIST
_CNN

Mob
ileN

etV
2

Re
sN

et1
8

Re
sN

et3
4

Re
sN

et5
0

Re
sN

etS
mall

VGG11
VGG13

VGG16
VGG19

0

2

4

6

Ov
er

he
ad

(%
)

Fig. 13: Overhead occurring during data collection, shown by
model

V. RELATED WORKS

Training-Latency Prediction: Paleo [3] attempted to pre-
dict training time considering the model architecture, data
size, GPU FLOPS, bandwidth, and other factors. However,
there is concern that the security of the learning model
would be compromised due to the inclusion of the model
architecture if it were applied in a public cloud setup. The
MLPredict [4] model also predicts the training time of various
DNN models, including a variety of model architectures and
GPU hardware information. However, the contribution of
hardware data among all features is small, and the prediction
model references specific model information, such as kernel
size and input padding. NeuralPower [7] uses polynomial
regression, featuring an internal model architecture to predict
DNN training times for hardware environments and power
usage limited by resources. Ruohan Wu et al. [27] propose
a two-stage performance modeling framework that combines
graph-level analysis and operator-based hotspot modeling to
predict the execution time of DNN models. CDMPP [28]
is a framework for predicting operator latency for training
and inference in various DNN models and devices. All of
the aforementioned methods used model architecture data,
and model information cannot be protected. The algorithm
proposed in this paper has the advantage of not having to
reveal the model architecture or training details because it only
uses hardware metric data.

Habitat [6] and PROFET [5] predict training time using
features collected by profiling. DNNAbacus [29] analyzes the
computational resource demands of classical DNN models
and introduces a lightweight DNN performance prediction
model. The study employed a profiling approach to generate
training data by utilizing model information. DNNAbacus
accurately predicts train time and memory costs for PyTorch
and TensorFlow models showcasing its efficacy across diverse
architectures. Black-box models, in comparison to white-box
models, do not reveal detailed insights into the system’s inter-
nal operations. Our approach, which excludes all data related
to the model and training, demonstrates sufficient accuracy
even in situations requiring rigorous security. Thus, it has the
advantage of being applicable in public cloud environment
setups.

Runtime Estimation on the Cloud with Cost-Time
Optimization: Many studies have focused on performance



PALEO Our Method
MAPE 10.1072 15.14
RMSE 32.3637 4.14

TABLE VI: The prediction accuracy compare with PALEO

estimation in cloud environments. CherryPick [30] is a tool
that employs Bayesian optimization algorithms to efficiently
determine the optimal cloud configuration space for big data
analyses. Paris [31] is a data-driven system that provides accu-
rate performance estimates with minimal data collection, using
a unique combination of off-line and online data collection and
modeling to address the problem of optimal virtual machine
selection. MPEC [32] is a system that can predict latency when
performing distributed matrix multiplication tasks of various
input sizes and shapes with different instance types and the
number of worker nodes in a cloud computing environment.
The mentioned work has a commonality with this work in
the context of recommending an optimal environment in the
cloud. However, the target domain and devices become diverse
with recent advances in artificial intelligence applications, and
previous work primarily focused on CPU devices. As deep
learning becomes mainstream in the field, the setup of efficient
GPU environments becomes a crucial problem.

Srifty [11] proposed a performance prediction model in a
distributed cloud system composed of multiple GPUs using
model information and profiling model data. Oikonomos [33]
addresses the challenge of acquiring instances for deploy-
ing High-Performance Computing (HPC) applications in the
cloud. It calculates the cost per instance and suggests the most
suitable instance based on the user requirements. Accordia [34]
is a system developed to handle the diverse nature of big data
analysis jobs, identifying cost-optimal configurations in the
context of variable cloud service costs. It leverages Gaussian
Process Upper Confidence Bound (UCB) techniques to offer
theoretical performance guarantees. These studies assist users
in identifying the most optimal environment in the cloud,
including GPU instances. However, due to the use of instance-
related data and model data, these cannot be fully classified
as black-box models.

VI. LIMITATIONS AND FUTURE WORK

While the prediction accuracy of the proposed system has
not yet exceeded previous research that references model in-
formation, future studies should focus on improving prediction
accuracy based solely on hardware capabilities. In the future,
we anticipate employing a wider variety of algorithms such
as Neural Architecture Search (NAS) [35] to improve the
accuracy of the prediction model beyond its current state. The
proposed work mainly relies on hardware metrics to avoid
referencing internal model architecture for latency modeling,
other features need to be discovered to enhance prediction
model accuracy.

It is also essential to explore predictions for diverse hard-
ware beyond GPUs. In the experiments, we diversified the
GPU devices across different cloud vendors and could verify

the generality of the proposed algorithm. Assuming that newly
released GPUs keep providing similar hardware metrics, it is
expected to provide decent prediction accuracy. For special-
purpose hardware other than GPUs, such as Tensor Process
Units (TPU) [36] by Google or Tranium by AWS, the hard-
ware metrics and libraries provided are different from those
provided by GPUs. The overall procedure of this proposed
work composed of the epoch period detection and the training
time model can be applied to new hardware. However, the
specific metrics to characterize DNN training jobs need to be
further analyzed, which is remained for future work.

The current work supports the prediction of CNN models
only, but it is also important to exapnd the prediction to other
DNN model categories, such as RNN and Transformer models.
With the recent trend of increasing model and dataset sizes,
it would be beneficial to expand predictions to multi-GPU
environments, not just single GPUs. Furthermore, creating
a prediction model that includes not just training, but also
inference, can provide an even more comprehensive optimal
cloud environment for DNN.

VII. CONCLUSIONS

This paper proposes a system to predict training time
on cloud GPU instances without relying on model-specific
details, enabling cloud providers to offer time-efficient and
cost-effective training environments without disclosing model
internal architecture to users. To achieve the goal, the proposed
work leverages metrics generated from training hardware,
which does not need to reveal the internal architecture of DNN
models. Using hardware metrics as features, the proposed
system predicts the training latency of multiple DNN models
when they are conducted on various GPU devices. As the pro-
posed work necessitates minimal model-related information, it
can become a basis work to provide an optimal environment
for security-conscious users, especially in a public cloud
environment. To accomplish this, we developed an epoch-
detection algorithm by observing active device memory usage,
and using the detected epoch, we proposed a stacking regressor
for training latency prediction. The accuracy of the prediction
model is quantified at MAPE of 15.14%, which does not
diverge significantly from the prediction accuracy of recent
studies, including Paleo [3] and Habitat [6], which refer to the
internal architecture of DNN models. Given that most recent
similar work utilizes an internal model architecture to predict
training latency, the ability to produce comparable accuracy
without referencing internal model detail and using metrics
from hardware data exclusively is a major contribution of
this proposed work, and we believe it will provide a new
opportunity to offer a fully-managed cost and time optimal
DNN training environment on public cloud services.

VIII. ACKNOWLEDGMENTS

This work is supported by the National Research Founda-
tion (NRF) Grant funded by the Korean Government (NRF-
2020R1A2C1102544), AWS Cloud Credits for Research pro-
gram, and the SW Star Lab (RS-2022-00144309) of IITP.



REFERENCES

[1] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. Return of the devil in the details: Delving deep into convolutional
nets. In British Machine Vision Conference 2014, 2014.

[2] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann
Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. Serverless computing: One step forward, two steps back. In
9th Biennial Conference on Innovative Data Systems Research, CIDR
2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.
www.cidrdb.org, 2019.

[3] Hang Qi, Evan R. Sparks, and Ameet Talwalkar. Paleo: A performance
model for deep neural networks. In Proceedings of the International
Conference on Learning Representations, 2017.

[4] D. Justus, J. Brennan, S. Bonner, and A. S. McGough. Predicting the
computational cost of deep learning models, 2018.

[5] Sungjae Lee, Yoonseo Hur, Subin Park, and Kyungyong Lee. Profet:
Profiling-based cnn training latency prophet for gpu cloud instances. In
2022 IEEE International Conference on Big Data (Big Data), pages
186–193, 2022.

[6] Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko.
Habitat: A Runtime-Based computational performance predictor for
deep neural network training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 503–521. USENIX Association,
July 2021.

[7] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu.
Neuralpower: Predict and deploy energy-efficient convolutional neural
networks. Asian Conference on Machine Learning, 2017.

[8] Dana Petcu. Multi-cloud: Expectations and current approaches. In
Proceedings of the 2013 International Workshop on Multi-Cloud Ap-
plications and Federated Clouds, MultiCloud ’13, page 1–6, New York,
NY, USA, 2013. Association for Computing Machinery.

[9] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil
Bhardwaj, Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam
Mittal, Scott Shenker, and Ion Stoica. SkyPilot: An intercloud broker
for sky computing. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 437–455, Boston, MA,
April 2023. USENIX Association.

[10] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition, 2015.

[11] Liang Luo, Peter West, Arvind Krishnamurthy, and Luis Ceze. Srifty:
Swift and thrifty distributed training on the cloud, 2022.

[12] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Jayant Yadwadkar, Joseph E. Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. Cloud programming simpli-
fied: A berkeley view on serverless computing. CoRR, abs/1902.03383,
2019.

[13] NVIDIA. Create an op. https://www.tensorflow.org/guide/create op,
2023.

[14] NVIDIA. devicequery - device query. https://github.com/NVIDIA/
cuda-samples/tree/master/Samples/1 Utilities/deviceQuery, 2022.

[15] LinkedIn. luminol. https://github.com/linkedin/luminol, 2015.
[16] Nitin Kumar, Venkata Lolla, Eamonn Keogh, Stefano Lonardi, and

Chotirat Ratanamahatana. Time-series bitmaps: a practical visualization
tool for working with large time series databases. 04 2005.

[17] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic
representation of time series, with implications for streaming algorithms.
In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, DMKD ’03, page 2–11, New
York, NY, USA, 2003. Association for Computing Machinery.

[18] Copyright. In MICHAEL F. BARNSLEY, editor, Fractals Everywhere
(Second Edition), page IV. Academic Press, second edition edition, 1993.

[19] Abraham Savitzky and Marcel J. E. Golay. Smoothing and differentia-
tion of data by simplified least squares procedures. Analytical Chemistry,
36:1627–1639, 1964.

[20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan
Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul

van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020.

[21] Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of
offline change point detection methods. Signal Processing, 167:107299,
2020.

[22] George F. Jenks. The data model concept in statistical mapping. 1967.
[23] David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–

259, 1992.
[24] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[25] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,

Anna Veronika Dorogush, and Andrey Gulin. Catboost: unbiased
boosting with categorical features, 2019.

[26] Deep dive into scikit-learn’s histgradientboosting classifier and regressor.
histgradientboosting, 2019.

[27] Ruohan Wu, Mingfan Li, Hanxi Li, Tianxiang Chen, Xinghui Tian,
Xiaoxin Xu, Bin Zhou, Junshi Chen, and Hong An. Machine learning-
enabled performance model for dnn applications and ai accelerator. 2022
IEEE 24th Int Conf on High Performance Computing & Communica-
tions; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart
City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems
& Application (HPCC/DSS/SmartCity/DependSys), pages 25–34, 2022.

[28] Hanpeng Hu, Junwei Su, Juntao Zhao, Yanghua Peng, Yibo Zhu, Haibin
Lin, and Chuan Wu. Cdmpp: A device-model agnostic framework for
latency prediction of tensor programs. ArXiv, abs/2311.09690, 2023.

[29] Lu Bai, Weixing Ji, Qinyuan Li, Xi Yao, Wei Xin, and Wanyi Zhu.
Dnnabacus: Toward accurate computational cost prediction for deep
neural networks. ArXiv, abs/2205.12095, 2022.

[30] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. Cherrypick: Adaptively
unearthing the best cloud configurations for big data analytics. In 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 469–482, Boston, MA, 2017. USENIX Association.

[31] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton
Smith, and Randy H. Katz. Selecting the best vm across multiple public
clouds: A data-driven performance modeling approach. In Proceedings
of the 2017 Symposium on Cloud Computing, SoCC ’17, pages 452–465,
New York, NY, USA, 2017. ACM.

[32] M. Son and K. Lee. Distributed matrix multiplication performance
estimator for machine learning jobs in cloud computing. In 2018
IEEE 11th International Conference on Cloud Computing (CLOUD),
volume 00, pages 638–645, Jul 2018.

[33] Jan Harm Betting, Dimitrios Liakopoulos, Max Engelen, and Chris-
tos Strydis. Oikonomos: An opportunistic, deep-learning, resource-
recommendation system for cloud hpc. In Proceedings - 2023 IEEE
34th International Conference on Application-Specific Systems, Archi-
tectures and Processors, ASAP 2023, Proceedings of the International
Conference on Application-Specific Systems, Architectures and Proces-
sors, pages 188–196, United States, 2023. Institute of Electrical and
Electronics Engineers (IEEE). 34th IEEE International Conference on
Application-Specific Systems, Architectures and Processors, ASAP 2023
; Conference date: 19-07-2023 Through 21-07-2023.

[34] Y. Liu, H. Xu, and W. Lau. Cloud configuration optimization for
recurring batch-processing applications. IEEE Transactions on Parallel
amp; Distributed Systems, 34(05):1495–1507, may 2023.

[35] Barret Zoph and Quoc V. Le. Neural architecture search with reinforce-
ment learning. CoRR, abs/1611.01578, 2016.

[36] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, et al. In-
datacenter performance analysis of a tensor processing unit. SIGARCH
Comput. Archit. News, 45(2):1–12, June 2017.


