
Noname manuscript No.
(will be inserted by the editor)

S-MPEC : Sparse Matrix Multiplication Performance
Estimator on a Cloud Environment

Jueon Park · Kyungyong Lee

Received: date / Accepted: date

Abstract Sparse matrix multiplication (SPMM) is widely

used for various machine learning algorithms. As the

applications of SPMM using large-scale datasets be-

come prevalent, executing SPMM jobs on an optimized

setup has become very important. Execution environ-

ments of distributed SPMM tasks on cloud resources

can be set up in diverse ways with respect to the in-

put sparse datasets, distinct SPMM implementation

methods, and the choice of cloud instance types. In

this paper, we propose S-MPEC which can predict la-

tency to complete various SPMM tasks using Apache

Spark on distributed cloud environments. We first char-

acterize various distributed SPMM implementations on

Apache Spark. Considering the characters and hard-

ware specifications on the cloud, we propose unique

features to build a GB-regressor model and Bayesian
optimizations. Our proposed S-MPEC model can pre-

dict latency on an arbitrary SPMM task accurately and

recommend an optimal implementation method. Thor-

ough evaluation of the proposed system reveals that a

user can expect 44% less latency to complete SPMM

tasks compared with the native SPMM implementa-

tions in Apache Spark.

Keywords cloud computing · instance recommenda-

tion · sparse matrix multiplication · Apache Spark

Jueon Park
Department of Computer Science. Kookmin University.
Seoul. South Korea.
E-mail: jueon@kookmin.ac.kr

Kyungyong Lee (Corresponding Author)
Department of Computer Science. Kookmin University.
Seoul. South Korea.
E-mail: leeky@kookmin.ac.kr

1 Introduction

Large-scale datasets from real-world applications and

their relationships can be represented using a graph.

In a graph, an edge between two nodes means they

are related in some ways. An edge can have a weight

value depending on the datasets. Friends connections

and users subscriptions in a social network, product-

review ratings in an e-commerce site, user-movie rat-

ings in a movie-streaming service, and hyperlinks from

a source to a destination website can be expressed us-

ing a graph. For extracting valuable information from

graph-structured datasets using several types of ma-

chine learning algorithms, there is need to express the

datasets in a computer-friendly format. Moreover, many

data mining algorithms require input datasets to be

represented in a sparse matrix format. For example, the

power method implementation of the PageRank algo-

rithm [28] and nonnegative matrix factorization (NMF) [22],

which is widely used for various recommendation sys-

tems, requires input datasets to be represented in a

matrix format.

Furthermore, processing various types of big data

requires considerable computing power and general-purpose

distributed computing platforms, such as Apache Hadoop [11]

and Spark [44]. It also requires a set of application

programming interfaces (APIs) that abstract complex

fault-tolerance mechanisms in a distributed environ-

ment, task scheduling with heterogeneous resources, and

guaranteeing scalability as demand changes. Using the

high-level APIs of Apache Spark, we can implement

various machine learning algorithms conducted on a

shared-nothing distributed computing environment us-

ing the MLLib [25]. This MLLib [25] provides various

matrix operations on a distributed computing environ-

ment [2], including matrix multiplication and factor-



2 Jueon Park, Kyungyong Lee

ization, which are the core kernels of many machine

learning algorithms.

Generally, running an Apache Spark task for data

mining jobs requires huge computing power. To meet

various computing demands, running a Spark cluster in

a cloud computing environment becomes a norm. When

using cloud resources, the users have to choose compute

instances from the perspective of response time and

cost. Cloud computing service evolves very fast, and it is

challenging for ordinary users to follow updates and ap-

ply them to their analysis environment. For instance, at

the time of writing, Amazon Web Services (AWS) pro-

vides over 100 Elastic Computing Cloud (EC2) instance

types, which users have to decide to satisfy application

needs.

In addition to the cloud computing service diversity,

there are many challenges when running data mining al-

gorithms with SPMM using Apache Spark MLLib [25].

Input datasets for an SPMM task can be diverse as they

can be generated from various sources, such as social

network service [24]. In addition, there are various ways

of implementing SPMM tasks in a distributed environ-

ment that even adds complexity to optimize the exe-

cution. Despite this complexity, almost every guidance

optimally operated SPMM tasks using Apache Spark

on a cloud environment.

To help users better understand the distributed SPMM

execution characteristics and guide optimal implemen-

tation of arbitrary SPMM tasks with different numbers

of rows and columns, densities, multiple implementa-

tion methods, and cloud instance types, we propose S-

MPEC, Sparse Matrix Multiplication Performance Es-

timator on Cloud. We first propose a set of features that

represent the characteristics of input matrices, multipli-

cation implementation details, and underlying cloud in-

stances. Using the proposed features, S-MPEC utilizes

a GB regressor [12] modeling to predict latency of vari-

ous SPMM tasks. To find the optimal hyper-parameters

of the proposed model, we employed the Bayesian op-

timization [36] algorithm. Using the generated model,

S-MPEC predicts the latency of a given SPMM work-

load and recommends proper cloud instance types and

SPMM implementation methods. We thoroughly eval-

uated S-MPEC under realistic scenarios and discovered

that S-MPEC could improve the average response time

of SPMM 44% compared to the Apache Spark MLLib’s

native implementation by switching appropriate multi-

ply implementation methods dynamically.

In summary, the main contributions of this paper

are as follows.

– We discovered the performance variability of a dis-

tributed SPMM operation on Apache Spark and

the lack of general guidance regarding performance

characteristics.

– We propose features that can represent distributed

SPMM tasks and cloud instances.

– We build a model that accurately predicts the la-

tency of arbitrary SPMM tasks on various cloud in-

stances.

– We assess the practicality of building a model that

predicts a distributed SPMM performance for di-

verse scenarios to improve the overall performance.

This paper is organized as follows: Section 2 presents

related work in the literature. Section 3 discusses vari-

ous algorithms to implement SPMM with Apache Spark

and presents the performance variability. Section 4 presents

the proposed model that predicts SPMM performance,

and Section 5 thoroughly evaluates the proposed model.

Section 6 concludes this paper with future work.

2 Related Work

Optimizing Matrix Multiplication : Optimization

of matrix multiplication in an HPC environment has

been thoroughly studied in the literature. Researchers

have carried out many studies on minimizing commu-

nication overhead using a highly optimized MPI library

or carefully designing algorithms on multi-core shared

memory machines, such as SUMMA [39], CARMA [8],

Patwary et. al. [31], and ScalaPack [6]. Despite the tech-

nological advancement in the HPC research community,

not much work have been done to characterize and op-

timize performance of SPMM on a distributed shared-

nothing computing environment, especially for Apache

Spark [44] and Hadoop [11], which are popular big-data

processing engines. The proposed S-MPEC provides a

way to build an efficient environment to conduct dis-

tributed SPMM tasks using Apache Spark. The previ-

ous work focused on the optimization of SPMM on a

single machine in a HPC or specialized hardware. They

are complementary for our proposed work because each

executor in a Spark cluster can equally apply such op-

timization techniques proposed in the HPC domain.

Matrix Multiplication on Big-Data Process-

ing Framework : Kim et. al. [19] and Marlin [13]

proposed an algorithm to predict matrix multiplication

performance of Apache Spark. Marlin proposed to use

matrix size to decide optimal scheduling of multiplica-

tion tasks, whereas Kim et. al. suggested using various

matrix multiplication characteristics to predict perfor-

mance. Despite the improvement in the Kim et. al. and

Marlin approaches over the native Spark feature, both

work support only dense matrix multiplication which

limits the work’s applicability. In addition, Marlin does



S-MPEC : Sparse Matrix Multiplication Performance Estimator on a Cloud Environment 3

not support various cloud instances in the recommenda-

tion. HAMA [33] proposed a MapReduce program using

Apache Hadoop to perform distributed matrix multipli-

cation, but it supports only dense matrix cases. Yu. et.

al. [43] thoroughly analyzed shuffling overhead of the

distributed matrix multiplication and proposed a task

execution plan concerning the network overhead. De-

spite the large amount of work involved in the course of

shuffling, other factors also significantly impact its per-

formance. Moreover, aside from the dense matrix multi-

plication, an SPMM task can be implemented in more

diverse ways. This factor has to be considered when

choosing an optimal execution plan. Park et. al. [30]

proposed an algorithm that predicts the latency of per-

forming SPMM tasks, but they did not consider a cloud

environment where diverse instance types exist.

Stark [26] presented an implementation of Strassens’s

matrix multiplication [15] on Apache Spark. The au-

thors showed that their implementation outperforms

the native Spark MLLib implementation and Marlin [13].

JAMPI [10] is an implementation of Cannon’s distributed

matrix multiplication [23] on Apache Spark combining

distributed message passing and Spark’s barrier exe-

cution mode. Comparing to the Spark MLLib imple-

mentation, JAMPI showed up to 24% faster response

time. Despite of the performance improvement over the

baseline implementations, Stark and JAMPI supports

multiplication of two dense matrices only, and it lim-

its the applicability of the work because sparse matrix

representation is widely adopted in big-data processing.

Optimal Big-Data Processing Framework Con-

figuration : Herodotou et. al. proposed Starfish [14]

that finds optimal configurations for MapReduce [7]

workloads, but it did not consider various cloud in-

stance types. Jalaparti et. al. proposed Bazaar [16],

and Wieder et. al. proposed Conductor [41]. They find

cost based optimal cloud instances for given workloads

on Hadoop, but they did not evaluate for SPMM, so

complex characteristics of SPMM cannot be considered

from them. Cheng et. al. proposed CAST [5] that helps

in select storage on cloud, and Klimovic et. al. proposed

Selecta [20] that provides an optimal configuration for

cloud storage and instance. They showed good accu-

racy on prediction, but they use simple workloads, such

as sort, join, grep and k-means that cannot consider

SPMM’s complex characteristics.

Optimal Cloud Environment for Machine Learn-

ing : To help users build optimal cloud environments

and process a large-scale of datasets, Ernest [40] pro-

posed an algorithm that predicts the performance of

various machine learning jobs with different input datasets

and various cloud instance types. The authors used

a non-linear regression for their prediction model. To

achieve a similar goal with Ernest, PARIS [42] applied

Random Forest [3] modeling, and CherryPick [1] adopted

Bayesian Optimization to select the optimal set of ex-

periments on cloud. FC2 [27] presents a system which

recommends optimal cloud instances for distributed ma-

chine learning. The system does not reference machine

learning algorithm source code but use resource infor-

mation and scalability property of a machine learning

task. The authors of FC2 provide a web-interface so

that users can easily access the proposed system. The

proposed work focused on predicting general machine

learning jobs. However, the task of characterizing the

SPMM is very different from a general machine learn-

ing job whose main computation kernel is not the ma-

trix multiplication. Son et. al. [37] revealed that the in-

put dataset for a matrix multiplication task is distinct

from general machine learning jobs, and the perfor-

mance prediction of matrix multiplication jobs should

be treated separately.

To better evaluate cloud environment for big-data

processing, Shen et. al. [35] proposed a model to as-

sess performance of cloud services for various machine

learning jobs. S-MPEC is complementary for the work,

and it can apply the assessment algorithm proposed

in the work to improve execution time accuracy for

general workload other than SPMM. Shahidinejad et.

al. [34] proposed a workload scheduling algorithm on

a cloud computing environment. The authors proposed

to categorize heterogeneous workloads using a K-Means

algorithm and make a scaling decision using a tree-

structure branching algorithm. Using the proposed al-

gorithm, most SPMM tasks can be clustered into a

same category and miss various SPMM task character-

istics that is presented in this paper. Thus, workload-

specific parameters need to be considered in the schedul-

ing as presented in this work.

3 Distributed Sparse Matrix Multiplication

To store and access a sparse matrix using Apache Spark,

MLLib [25] provided distributed sparse matrix repre-

sentations: indexed-row and block matrices. Both ap-

proaches use resilient distributed dataset [44] as the un-

derlying mechanism to store the sparse matrices, while

guaranteeing fault-resilience. In the indexed-row repre-

sentation, an input matrix is stored in a row-wise man-

ner where a row is stored as a sparse vector locally in

the distributed servers. To store blocks in a column-

major order, we transpose an input matrix and store it

in the indexed-row format. Moreover, in the block rep-

resentation, an entire sparse matrix is partitioned into

either the row and/or column direction. After partition-



4 Jueon Park, Kyungyong Lee

(a) Outer sparse product

(b) Inner sparse product

(c) Indexed-Row multiply

(d) Block multiply

Fig. 1: Various SPMM implementation with distributed

sparse matrices

ing, a block of the sparse matrix is stored in compressed

sparse column (CSC) format.

Using the distributed representations of sparse ma-

trices, we highlight four distributed SPMM implemen-

tations in Figure 1. For the brevity of the descriptions,

we define A, B, and C, as the left, right, and the result

matrix, which is C = A×B. We use i and j to denote

an arbitrary row index of A and a column index of B.

Moreover, k denotes an arbitrary column index of A

and row index of B. The capital letters I, K, and J de-

note the corresponding dimension size. In each matrix,

we use subscripts with a parenthesis to denote the row

and column indices. For example, A(i,k) indicates an

element in the i-th row and k-th column of matrix A.

The ∗ notation in the row or column index of a matrix

denote an entire row or column. For example, A(i,∗) in-

dicates the i-th row of a matrix A. It should be noted

that N expresses the number of Spark worker nodes to

perform an SPMM task and assume that an input ma-

trix can be equally partitioned among N worker nodes.

3.1 Outer-Sparse SPMM

Figure 1a illustrates an SPMM implementation of the

outer sparse product. In the method, A is partitioned

into column-wise (A∗,k), and B is partitioned into row-

wise (Bk,∗). A GroupBy operation is applied for k.

In each grouped result, an outer product is conducted

(A∗,k⊗Bk,∗) that results in an intermediate output ma-

trix of size I × J . During the outer product operation,

each vector remains in a sparse status. We performed

the element-wise summation to derive the final result,

C.

Shuffle overhead: The shuffle overhead of two sparse

matrices multiplication is majorly impacted by the dis-

tribution of the number of non-zero (NNZ) elements

which is not a static value. However, to compare the

shuffle overhead of different SPMM implementations,

we omitted the impact from the NNZ distribution in

each method. In the outer SPMM implementation, a

worker node is responsible for I × K
N elements from A

and K
N × J from B. Thus, an executor process fetches

necessary partitions from A and B that is I×K
N +K

N×J ,

which happens N times. Each worker node conducts

multiplication and generates an output matrix of size

I×J that is summed element-wise. Hence, the shuffling

overhead of the outer SPMM becomes Equation 1.

Shuffleouter = K × (I + J) + N × I × J (1)



S-MPEC : Sparse Matrix Multiplication Performance Estimator on a Cloud Environment 5

Methods Dominant Shuffle ToDense Native

Outer N × I × J No No
Inner N ×K × (I + J) No No

IndexedRow N ×K × (I + J) Yes Yes

Block
√
N ×K × (I + J) Yes Yes

Table 1: Performance characteristics of different SPMM

implementations

3.2 Inner-Sparse SPMM

Figure 1b explains an SPMM implementation, which

uses an inner sparse product. In the method, Ci,j is

generated by conducting an inner product of a row from

the left matrix and a column from the right matrix,

Ci,j = Ai,∗ · B∗,j . In the inner-product operation, we

kept each vector in a sparse state. Stitching scalar val-

ues from the inner-product operations results in the

final output matrix, C.

Shuffle overhead: In the inner SPMM implemen-

tation, a worker node is responsible for I
N ×K elements

from A and K × J
N elements, which are from B. An

executor process fetches the necessary partitions from

A and B. That is I
N ×K + K × J

N which happens N2

times. After conducting multiplication in each executor,

we aggregated the final output in one place, resulting in

shuffling overhead of I×J . The total shuffling overhead

of the inner SPMM becomes Equation 2.

Shuffleinner = N ×K × (I + J) + I × J (2)

3.3 IndexedRow Partitioning SPMM

Figure 1c displays an SPMV implementation using the

indexed-row data structure provided by Spark [38]. The

multiplication method is natively supported by Apache

Spark. In this method, the right matrix, B, should exist

locally in a Spark driver. A driver broadcasts the ma-

trix to all workers after converting it to a dense matrix.

In each worker node with multiple executors, the inner

product between a sparse vector (Ai,∗) and a dense vec-

tor (B∗,j) is calculated by Ci,j. The shuffling overhead

of indexed-row is same as inner-sparse in the Equa-

tion 2 because the matrix distribution mechanism is

the same.

3.4 Block Partitioning SPMM

Furthermore, Figure 1d shows an SPMM method us-

ing a distributed block-partitioning mechanism that is

natively supported by Apache Spark [38]. In the block-

partitioning scheme, we divide the matrix into the row

Fig. 2: Multi Source BFS algorithm as a workload to

evaluate various distributed SPMMs

and column directions. To calculate a block of the out-

put matrix, the corresponding entire rows from the left

matrix and columns from the right matrix are fetched

to a node that is used in the calculation. During mul-

tiplication, the left matrix is kept in a sparse CSC for-

mat, whereas the right matrix is converted into a dense

matrix format.

Shuffle overhead: For brevity of the analysis, we

assume that N worker nodes can divide the input ma-

trices evenly [19]. A worker node that is responsible for

an output block fetches I√
N
×K from A and K × J√

N
from B. After each worker’s node performs multipli-

cation locally, the final result is gathered that results

in shuffle overhead of I × J across all executors. Thus,

the total shuffling overhead of block SPMM becomes

Equation 3.

Shuffleblock =
√
N ×K × (I + J) + I × J (3)

We do not compare the number of multiply opera-

tions for different SPMM implementations because the

value is the same across all the implementation mecha-

nisms [21].

Table 1 summarizes the characteristics of the four

distinct SPMM implementations, as shown in the first

column. The second column shows the dominant fac-

tor that impacts the overall shuffle overheads. We can

see that the shuffle overhead is mainly dependent on

the shape of the left and right matrices. The third col-

umn indicates whether there exists conversion from the

sparse format to the dense format. The IndexedRow and

Block requires the right matrix to be transformed into

a dense format, whereas the left matrix remains in a

sparse format. The fourth column indicates whether

the corresponding SPMM implementation is natively



6 Jueon Park, Kyungyong Lee

(a) Orkut dataset (b) DBLP dataset (c) Youtube dataset

Fig. 3: Sparse matrix multiplication using Apache Spark with different matrix distribution mechanisms

supported by the Apache Spark, MLLib [38]. Notably,

Spark does not natively support the outer product and

inner sparse product. Thus, we implement these our-

selves to make S-MPEC cover wide range implementa-

tions.

3.5 Performance Dynamics of Distributed SPMM

To understand the performance of different SPMM mech-

anisms presented in Figure 1, we conducted a perfor-

mance evaluation on different heuristics. In the experi-

ments, we performed SPMMs using a left sparse matrix

and a right matrix with various densities. To generate

a realistic SPMM workload, we employed the multiple-

source breadth-first search (BFS) algorithm [17], which

is explained in Figure 2. The algorithm repeatedly per-

forms an SPMM operation with a left matrix built from

an input sparse dataset and a right matrix indicating

the source to the destination mappings. A right ma-

trix for a multiply operation is first defined by setting a

source ID node to 1 and others to 0 in each column. The

result of the left and right matrix multiplications indi-

cates the path from the source to the destination. Dur-

ing iterative multiplications, a result matrix becomes

the right matrix for the next iteration, indicating the

path connection in multiple hops. Because a right ma-

trix is updated in every iteration, the density changes

in every iteration. Thus, it can provide various multi-

plication scenarios by operating in multiple iterations.

To evaluate the performance of the four different

distributed implementations of SPMM in Figure 1, we

used Orkut (Figure 3a), DBLP (Figure 3b), and YouTube

(Figure 3c) datasets as left matrices. The datasets are

downloaded from the SNAP site [24]. For the right ma-

trix, we set a random source element to be 1, and up-

date the right matrix in every iteration using a result

matrix of a previous SPMM. To investigate the char-

acteristics from various multiplication scenarios, we set

the density of the right matrix to 0.001, 0.01, 0.05, and

0.1. Because the right matrix becomes denser in differ-

ent ratios for a distinct left matrix dataset, we choose

cases in which the right matrix density is the closest the

configured densities. In each figure, different distributed

SPMM implementations are expressed on the horizon-

tal axis. Each SPMM method has four bars that repre-

sent the performance of the distinct right matrix densi-

ties. The vertical axis indicates the normalized latency

for the best performance of the same right matrix den-

sity with different distributed SPMM mechanisms. The

experiments were conducted on AWS Elastic MapRe-

duce version 5.27.0 with one master and four workers,

and we used r5.2xlarge instances. All workload scenar-

ios were conducted three times, and the median value
was selected from the results to remove the impact from

experimental noise in cloud [29,?].

To represent the relative performance difference of

the SPMM method with their corresponding different

right matrix densities, we grouped the bars of the dif-

ferent densities with the same SPMM method. For ex-

ample, the outer sparse in Figure 3a, exhibits a better

performance than other SPMM methods when the right

matrix density is 0.001, but the performance degrades

significantly when the density of the right matrices in-

creases. When the right matrix density becomes 0.1,

and the outer sparse implementation shows about seven

times more latency than the best case (indexed-row)

for the Orkut dataset. Different input datasets show a

different pattern of performance changes with different

right matrix densities. Orkut dataset shows over seven

times performance difference. For DBLP dataset, it is

about two and a half times. Furthermore, the perfor-

mance change pattern is not consistent for all SPMM



S-MPEC : Sparse Matrix Multiplication Performance Estimator on a Cloud Environment 7

Fig. 4: S-MPEC architecture

implementations. For inner-sparse implementation, the

latency keeps increasing as the right matrix densities

increase for Orkut dataset. However, for the Youtube

dataset, the latency keeps decreasing as the right ma-

trix densities increase. From the figures, we can observe

that the performance difference among different SPMM

implementations, right matrix densities, and left matrix

characteristics are significant and noticeable. Unfortu-

nately, we cannot determine a globally optimal SPMM

implementation, which can result in considerable per-

formance variability for various data mining jobs im-

plemented on Apache Spark.

4 S-MPEC Architecture

As we cannot determine a globally optimal SPMM im-

plementation, we propose S-MPEC to recommend the

optimal distributed SPMM execution environment. S-

MPEC receives details about input matrices to conduct

a SPMM task from the user. Using the input matrices

information, S-MPEC predicts latency to complete an

input workload under four different SPMM implemen-

tations and cloud instance types. In addition, S-MPEC

helps users choose optimal environments to complete

the input workload considering latency and cost using

the predicted latency.

4.1 Modeling Distributed SPMM Performance

The performance of distributed SPMM implementa-

tions differs significantly as the input datasets vary. It

is very critical to predict the estimated latency of an ar-

bitrary SPMM task because it is among the core kernel

of many machine learning jobs. To predict the perfor-

mance of various SPMM tasks under diverse cloud envi-

ronments, we first propose features to represent charac-

teristics of various SPMM workloads and cloud instance

types. Using the proposed features, S-MPEC builds a

prediction model using a GB-regressor [12] that ac-

curately represents non-linear interactions among fea-

tures. Furthermore, S-MPEC applies Bayesian optimiza-

tion [36] to determine the optimal hyper-parameters.

In building a prediction model, the first step is how

to determine a representative set of features. In sparse

matrix, we use the dimension of left and right matrices

and name them as lr, lc, and rc to denote our represen-

tative set of features, where lr, lc, and rc is the num-

ber of left matrix rows, left matrix columns, and the

right matrix columns, respectively. Because the target

workload of the proposed model is a sparse matrix, the

density of a matrix is an important factor that must

be considered. We call it l − density and r − density

for left matrix density and the right matrix density, re-

spectively.

In addition to the left and right densities, we also

add the number of nonzero (nnz) elements of the left

and right matrices, l − nnz and r − nnz, accordingly.

Note that the nnz of a matrix is already reflected in

the density feature because it is calculated by dividing

the nnz (l−nnz for a left matrix) by the total number

of elements (lr× lc for a left matrix). Ideally, such a re-

lationship should be captured while building a model.

Deep neural-net [32] is good at finding hidden relation-

ships from a very large-scale input dataset. However, it

requires a significant number of input datasets to detect

hidden characteristics, which is impractical to generate

the numerous input datasets required for SPMM tasks.

Thus, we add the nnz and density feature manually.

We add lr × rc to represent the dimension of an

output matrix from the SPMM task. Because we tar-

get sparse input datasets, the size and NNZ elements

from an output matrix cannot be estimating before the

actual computation. We expect that the combination

of l − nnz, r − nnz, and lr × rc can estimate the over-

head of the node that is responsible for storing an out-

put matrix. We add l− nnz + r− nnz to represent the

shuffling overhead for all nodes during computation. To

consider the actual number of product computations in

the sparse matrix format, we add l − nnz × r − nnz.

Referencing the performance estimation of the dis-

tributed dense matrix multiplication using Spark [19], [37],

we add lr× lc× rc and lr× lc+ lc× rc, which represent

the total number of product operations and the shuffle

overhead, respectively. To build a unified model that is



8 Jueon Park, Kyungyong Lee

applicable for the four methods of an SPMM operation,

we add a method feature categorically.

To express the characteristics of various cloud in-

stances, we add hardware features that are the num-

ber of CPU cores, CPU clock speed, memory size, disk,

and network bandwidth of cloud instance types. To use

practical disk IO bandwidth, we conducted dd work-

loads, whereas the iperf3 command in the Function-

Bench [18] is used for the network bandwidth.

We build our prediction model using the GB regres-

sor [12] with the features that are mentioned above.

The GB regressor produces a prediction model in the

form of an ensemble of weak prediction models, typ-

ically decision trees. It produces a classifier based on

the classifier’s accuracy generated on the previous step

and ensembles those classifiers to generate a more ac-

curate final model.

In GB regressor modeling, various hyper-parameters

are used, such as learning rate, max depth, gamma,

and so on. It is not easy to find the best hyper-parameter

combination in modeling. Although experimenting with

all possible combinations of hyper-parameters provides

the best hyper-parameters, it takes a long time. There-

fore, we employed the Bayesian optimization to deter-

mine the optimal hyper-parameters with extra minimal

overhead.

Figure 4 shows the overall architecture of the pro-

posed S-MPEC. A user submits workload characteris-

tics of a SPMM task, such as the dimension of left and

right matrices, and densities. S-MPEC equips a model

that is built offline using various SPMM scenarios with

diverse cloud instance types. Using the model, S-MPEC

predicts the latency of the input workload scenario for

various cloud instance types and sizes.

5 Evaluation

To present the applicability and advantage of predict-

ing the performance of SPMM operations with vari-

ous sparse matrices, distributed implementation, and

cloud instance types, we conducted experiments cover-

ing thorough scenarios. To present various input dataset,

we used Orkut, DBLP, and Youtube graph datasets

from SNAP [24]. The Orkut dataset contains 3,072,441

nodes, 117,185,083 edges, and 234,370,166 nnz. The

DBLP dataset has 317,080 nodes, 1,049,866 edges, and

2,099,732 nnz. The Youtube dataset also contains 1,134,890

nodes, 2,987,624 edges, and 5,975,248 nnz. We applied

four distributed SPMM implementations to the input

datasets, but some implementations could not complete

the given workloads because of the memory limitation.

We used six AWS EC2 instances types: c5.xlarge, c5.2xlarge,

Fig. 5: Prediction accuracy of a model built with GB

regressor

c5.4xlarge, r5.xlarge, r5.2xlarge, and r5.4xlarge as our

cloud instances. c5 instances are designed for compute-

intensive workloads, while r5 instances are optimized

for workloads that require large amounts of memory.

For example, c5.xlarge instance offers 2 CPU cores and

4GB memory, while r5.xlarge instance offers 2 CPU

cores and 32GB memory. r5 instances provides 8 times

more memory than c5, but CPU core of c5 instances of-

fer 3.0GHz clock rate, while r5 instances offer 2.5GHz.

Thus, some matrix multiplication scenarios can be com-

pleted with r5 instances, but c5 instances cannot com-

plete because of the memory limitation. Using the input

dataset as a left matrix, we conducted multi-source BFS

algorithms in multiple iterations using Apache Spark.

To reproduce a practical BFS scenario, we varied the

sparsity of the right matrix to different degrees. The ex-

periments were conducted on AWS Elastic MapReduce

version 5.27.0 with one master and four workers. All the

experiments are conducted three times, and we take

median for presentation. We used Python 3.8.5 with

xgboost 1.2 and bayesian-optimization 1.2 libraries in

building the optimized prediction model from the ma-

trix multiplication results.

5.1 Model Accuracy for Distinct SPMM

Implementations

We first evaluated the GB-regressor model’s prediction

accuracy, which is S-MPEC’s prediction modeling al-

gorithm, with the proposed feature sets. We performed

K-fold cross validation ten times, dividing the training

and test datasets into an 8:2 ratio. We measured the

prediction accuracy using R2, and the mean absolute

percentage error (MAPE) metric. The R2 metric mea-

sures the degree of resemblance of the predicted value



S-MPEC : Sparse Matrix Multiplication Performance Estimator on a Cloud Environment 9

Fig. 6: Prediction accuracy of a model built with NNLS

to the true value. The higher R2 value represents an

accuracy of a model with the maximum value of 1.0.

Figure 5 displays the R2 value (higher is better)

in the primary vertical axis whose values are repre-

sented in the bar with minimum and maximum indi-

cators. The MAPE value (lower is better) is shown

in the secondary vertical axis, where their values are

represented as star marks. The horizontal axis, reveals

the distributed SPMM implementations. The first hor-

izontal axis value, All, indicates a case that a predic-

tion model is built using datasets from all SPMM im-

plementation methods, and only the All model con-

tains method feature. The latter four values indicate

the prediction accuracy of a model built from training

datasets, generated from each method explained exclu-

sively in Section 3. We observe that the models built

from exclusive datasets regarding the SPMM imple-

mentation method exhibit better prediction accuracy

than the unified model. However, even the worst per-

forming unified All method demonstrates accurate re-

sults with 0.95 of R2 and a MAPE of about 7.6%. The

best prediction accuracy is achieved with the Block im-

plementation for R2 metric. Overall, we can observe

that the proposed S-MPEC can accurately model the

latency of various SPMM scenarios with diverse inputs.

To present superb prediction accuracy for a model

with a GB-regressor algorithm, we developed another

model using the nonnegative least square (NNLS) linear

regressor algorithm [4]. The result is presented in Fig-

ure 6. The overall prediction accuracy pattern is very

similar to that presented with the GB-regressor algo-

rithm. However, the degree of accuracy is significantly

lower. For instance, the R2 value of the All method is

only about 0.6, and MAPE is over 60%. From the re-

sult, we conclude that there is a non-linear interaction

among the suggested features for various SPMM imple-

mentations with diverse cloud instance types, because

a linear model cannot capture such characteristics ef-

fectively.

In the modeling step, S-MPEC utilizes the Bayesian

optimization algorithm to find an optimal set of pa-

rameters for the GB-regressor model. Table 2 presents

parameters that users can set during the GB-regressor

modeling and the default values from the xgboost li-

brary to show the performance improvement from the

hyper-parameter search step. The last column shows

the optimal hyper-parameters for the prediction model.

In running Bayesian optimization, we set the objective

metric as −1 × (MAPE × 10 + RMSE) that is mini-

mized during the step. We multiplied the MAPE value

by ten to fit the range of the absolute value with the

RMSE. Through the hyper-parameter optimization, we

can see that the prediction accuracy improves signifi-

cantly for all the evaluation metrics, and it contributes

to improving the prediction accuracy of S-MPEC. Com-

paring to the default configuration, S-MPEC adopts

a complex model with a larger number of estimators

which implies the complexity of the prediction task.

Default S-MPEC

n estimators 100 9304

colsample bytree 1 0.972

learning rate 1 0.019

max depth 6 5

gamma 0 6.63

subsample 1 0.7

R2 0.93 0.97

MAPE 13.51 7.32

RMSE 45.23 34.71

Table 2: Improved performance by using Bayesian op-

timization

5.2 Model Accuracy for Distinct Cloud Instance Types

To evaluate the prediction accuracy of S-MPEC for

different cloud instance types, we build a model of S-

MPEC after excluding a specific instance type (K-fold

cross validation for a cloud instance type). Figure 7

shows the prediction accuracy of various SPMM imple-

mentations for different instance types, and the hor-

izontal axis represents a target instance type to pre-

dict. We build a model after excluding a target instance

type on the horizontal axis in our modeling steps. Using

the model built, we predict the latency of the various

SPMM scenarios by setting the target instance type

appropriately in the features. The primary vertical axis

shows the R2 value which is represented as a bar, and

the secondary vertical axis shows the MAPE value that



10 Jueon Park, Kyungyong Lee

(a) All methods (b) Outer sparse (c) Indexed-Row

Fig. 7: Prediction accuracy for various cloud instance types

is represented as a star marker. At this stage, we show

three SPMM implementation methods because other

SPMM implementation methods present a similar pat-

tern. In choosing two implementations for presentation

to demonstrate our claim, we considered the uniqueness

in the operation (whether transforming a right matrix

to a dense format). From the figures obtained, we can

observe that S-MPEC predicts the latency of various

SPMM tasks when they are executed on diverse cloud

computing instances with MAPE less than 11%. On

indexed-row, MAPE values of r5 instances are relatively

higher than c5, because they could not get enough ex-

periment results from c5 instances. Please note that

the indexed-row method requires more memory than

other matrix multiplication methods and c5 instances

have difficulties in completing the task. This experiment

result demonstrates the applicability of S-MPEC in a

cloud computing environment, where various instances

are supported by many public vendors.

Using a GB-regressor model with Bayesian opti-

mization for optimal hyper-parameter selection, S-MPEC

accurately modeled the response time of various dis-

tributed SPMM implementations with the proposed fea-

tures when they are executed using Apache Spark on

various cloud environments. To understand which fea-

tures make significant contributions during modeling,

we calculated the feature importance, while building

the model. Figure 8 indicates the six most important

features for the various distributed SPMM implemen-

tations. Each figure reveals the relative importance of

each feature. The importance is calculated by count-

ing the number of times a feature is selected during

the decision tree build process [9]. For All model, the

method feature is the most dominant feature which in-

dicates the drastic latency difference of different SPMM

implementation. Other implementations consider both

matrix features and hardware features as important

to make accurate prediction in diverse environments.

Most methods consider cores as an important feature.

If given memory is enough to run the workload, the

number of CPU cores become the key factor to process-

ing tasks in parallel. Following cores, (l−nnz+r−nnz)

is an important feature that represents the shuffle over-

head. The compute overhead (l−nnz× r−nnz) is also

an important factor to decide the latency. Although we

added important features for distributed dense matrix

multiplication, which were presented in [37], the fea-

tures do not show a noticeable influence, which indi-

cates a drastic difference in the dense and sparse matrix

multiplication task characteristics. For SPMM tasks,

the density of left and right matrices is more important

than the dimensions of left and right matrices.

Figure 8 showed the relative importance of proposed

features. To understand the impact of the important

features to the overall prediction accuracy, we built

models by adding few important features that cumu-

latively measured the prediction accuracy in Figure 9.

The horizontal axis represents the number of features

used in the modeling, whereas the features are added

in a cumulative manner in the order of the importance,

presented in Figure 8. For instance, the All implemen-

tation in Figure 9a of x-axis value of being three means

that three most important features (method, cores, and

(l−nnz+r−nnz)) are used in building our model. The

primary vertical axis shows the values of R2, and the

secondary vertical axis shows the MAPE value. From

the figures, we can deduce that a model built using only

top few important features shows accurate result which

implies that shuffling and computing overheads are the

dominant factors to decide SPMM performance in a dis-

tributed cloud environment. The result from Figure 8

and 9 shows that different SPMM implementations re-

quire different features to make an accurate prediction

model, and the models are difficult to be generalizable

which needs a specialized process for the prediction.

Using S-MPEC, users can choose an optimal SPMM

implementation method to execute a multiplication task.

Assuming that an input dataset is loaded into an Apache



S-MPEC : Sparse Matrix Multiplication Performance Estimator on a Cloud Environment 11

(a) All methods (b) Outer sparse (c) Indexed-Row

Fig. 8: The most important 6 features for each methods and all methods aggregated

(a) All methods (b) Outer sparse (c) Indexed-Row

Fig. 9: Prediction accuracy improvement by adding important features gradually

Fig. 10: Performance benefit of using S-MPEC over the

Apache Spark native SPMM implementations

Spark driver as an RDD object, users can easily decide

which SPMM implementation to execute considering

the input characteristics, such as densities of left and

right matrices. Please note that Indexed-Row and Block

implementations are natively supported by Apache Spark

MLLib. Further, we release our implementation of Inner-

Sparse and Outer-Sparse as an open source to help

users choose when necessary.1

1 https://github.com/kmu-bigdata/spark-spmm-compute

To present the performance gain from using S-MPEC,

we tested various SPMM tasks with distinct input dataset

sizes. Each SPMM scenarios have different implementa-

tions for the best performance, and the result is shown

in Figure 10. The horizontal axis shows the different

SPMM mechanisms. We name the best performing im-

plementation method of each workload as ground truth

(GT), and S-MPEC (Proposed) recommends the pre-

dicted best implementation method using a proposed

model. To make recommendations, S-MPEC predicts

the latency when using four distinct methods and re-

turns the fastest completing SPMM method. The latter

four mechanisms use a single implementation method

statically, which means a user does not change SPMM

implementation based on the input datasets and sticks

to one corresponding implementation. The latter four

static implementation selection scenario is applied in

most cases for ordinary Spark users.

In the experiments, all implementations could not

complete some tasks because of memory limitations.

We mark such incomplete cases as N/A, and their val-

ues are shown in the secondary vertical axis as a star

marker. In the figure, the primary vertical axis shows

each method’s normalized latency on the horizontal axis

as a bar. We normalize latency to the GT value because

it consists of only the best performing implementation



12 Jueon Park, Kyungyong Lee

of each workload which is the fastest. Thus, the latency

value close to 1.0 implies good performance. In cal-

culating the normalized latency, we consider only the

cases when a given implementation successfully com-

pletes input workloads. As shown in the figure, the pro-

posed S-MPEC shows very good performance close to

GT. Two native Spark implementations (IndexedRow

and Block) show poor performance when compared to

the other two methods in terms of the number of N/A

picked because they force the input right matrix to

be transformed to a dense format, which causes out-

of-memory problems. This result represents the limita-

tion of the current Spark native implementation. From

the experiment result, we can conclude that S-MPEC

recommends the best performing implementations 87%

of cases. If we include top two performing implemen-

tation methods for recommendation, S-MPEC recom-

mends 96% of times correctly. Furthermore, it improves

the average latency by 44% on average over the Spark

native SPMM implementations that are IndexedRow

and Block.

6 Conclusion

This work presents S-MPEC, which accurately predicts

the latency of various SPMM tasks when they are ex-

ecuted on diverse cloud computing environments. Af-

ter summarizing various SPMM implementations in a

distributed environment, we demonstrated the perfor-

mance variability for diverse SPMM implementations

and input datasets that necessitates the performance

predictor for optimal performance. We proposed fea-

ture sets covering input sparse matrix and cloud in-

stance types to build a model that optimizes hyper-

parameters. We evaluated S-MPEC thoroughly under

realistic scenarios and showed that it improve the Spark

native SPMM performance by 44% on average.

Acknowledgement

This work is supported by the National Research Foun-

dation of Korea (NRF) Grant funded by the Korean

Government (MSIP) (NRF-2020R1A2C1102544, NRF-

2016R1C1B2015135, and NRF-2015R1A5A7037615), the

ICT R&D program of IITP (2017-0-00396), and Re-

search Credits provided by AWS.

References

1. O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman,
M. Yu, and M. Zhang, “Cherrypick: Adaptively
unearthing the best cloud configurations for big

data analytics,” in 14th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI 17). Boston, MA: USENIX Associa-
tion, 2017, pp. 469–482. [Online]. Available:
https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/alipourfard

2. R. Bosagh Zadeh, X. Meng, A. Ulanov, B. Yavuz, L. Pu,
S. Venkataraman, E. Sparks, A. Staple, and M. Za-
haria, “Matrix computations and optimization in apache
spark,” ser. KDD ’16. ACM, 2016, pp. 31–38.

3. L. Breiman, “Random forests,” Machine Learning,
vol. 45, no. 1, pp. 5–32, Oct 2001.

4. D. Chen and R. J. Plemmons, “Nonnegativity constraints
in numerical analysis,” in in A. Bultheel and R. Cools
(Eds.), Symposium on the Birth of Numerical Analysis,
World Scientific. Press, 2009.

5. Y. Cheng, M. S. Iqbal, A. Gupta, and A. R.
Butt, “Cast: Tiering storage for data analytics in
the cloud,” in Proceedings of the 24th International
Symposium on High-Performance Parallel and Dis-
tributed Computing, ser. HPDC ’15. New York, NY,
USA: ACM, 2015, pp. 45–56. [Online]. Available:
http://doi.acm.org/10.1145/2749246.2749252

6. J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker,
“Scalapack: a scalable linear algebra library for dis-
tributed memory concurrent computers,” in [Proceedings
1992] The Fourth Symposium on the Frontiers of Mas-
sively Parallel Computation, 1992, pp. 120–127.

7. J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” in Proceedings
of the 6th Conference on Symposium on Operat-
ing Systems Design & Implementation - Volume
6, ser. OSDI’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251254.1251264

8. J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz,
O. Schwartz, and O. Spillinger, “Communication-optimal
parallel recursive rectangular matrix multiplication,” in
Proceedings of the 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing,
ser. IPDPS ’13. Washington, DC, USA: IEEE Com-
puter Society, 2013, pp. 261–272. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2013.80

9. J. Elith, J. R. Leathwick, and T. Hastie, “A working
guide to boosted regression trees,” Journal of Animal
Ecology, vol. 77, no. 4, pp. 802–813, 2008.

10. T. Foldi, C. von Csefalvay, and N. A. Perez,
“Jampi: Efficient matrix multiplication in spark using
barrier execution mode,” Big Data and Cognitive
Computing, vol. 4, no. 4, 2020. [Online]. Available:
https://www.mdpi.com/2504-2289/4/4/32

11. A. S. Foundation, “Apache hadoop,” 2004. [Online].
Available: http://hadoop.apache.org/

12. J. H. Friedman, “Greedy function approximation: A
gradient boosting machine.” Ann. Statist., vol. 29,
no. 5, pp. 1189–1232, 10 2001. [Online]. Available:
https://doi.org/10.1214/aos/1013203451

13. R. Gu, Y. Tang, Z. Wang, S. Wang, X. Yin, C. Yuan,
and Y. Huang, “Efficient large scale distributed matrix
computation with spark,” in 2015 IEEE International
Conference on Big Data (Big Data), Oct 2015, pp. 2327–
2336.

14. H. Herodotou and S. Babu, “Profiling, what-if
analysis, and cost-based optimization of mapre-
duce programs.” PVLDB, vol. 4, no. 11, pp.
1111–1122, 2011. [Online]. Available: http://dblp.uni-
trier.de/db/journals/pvldb/pvldb4.htmlHerodotouB11



S-MPEC : Sparse Matrix Multiplication Performance Estimator on a Cloud Environment 13

15. S. Huss-Lederman, E. M. Jacobson, J. R. Johnson,
A. Tsao, and T. Turnbull, “Implementation of strassen’s
algorithm for matrix multiplication,” in Supercomputing
’96:Proceedings of the 1996 ACM/IEEE Conference on
Supercomputing, 1996, pp. 32–32.

16. V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron, “Bridging the tenant-provider gap in cloud
services,” in Proceedings of the Third ACM Symposium
on Cloud Computing, ser. SoCC ’12. New York, NY,
USA: ACM, 2012, pp. 10:1–10:14. [Online]. Available:
http://doi.acm.org/10.1145/2391229.2391239

17. J. Kepner and J. Gilbert, Graph Algorithms
in the Language of Linear Algebra, J. Kepner
and J. Gilbert, Eds. Society for Industrial
and Applied Mathematics, 2011. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9780898719918

18. J. Kim and K. Lee, “Functionbench: A suite of work-
loads for serverless cloud function service,” in 2019
IEEE 12th International Conference on Cloud Comput-
ing (CLOUD), July 2019, pp. 502–504.

19. J. Kim, M. Son, and K. Lee, “Mpec: Distributed matrix
multiplication performance modeling on a scale-out cloud
environment for data mining jobs,” IEEE Transactions
on Cloud Computing, pp. 1–1, 2019.

20. A. Klimovic, H. Litz, and C. Kozyrakis, “Selecta:
Heterogeneous cloud storage configuration for data
analytics,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18). Boston, MA: USENIX
Association, Jul. 2018, pp. 759–773. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/klimovic-
selecta

21. D. Langr and I. Simecek, “Analysis of memory
footprints of sparse matrices partitioned into
uniformly-sized blocks,” Scalable Comput. Pract. Exp.,
vol. 19, no. 3, pp. 275–292, 2018. [Online]. Available:
https://www.scpe.org/index.php/scpe/article/view/1358

22. D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in In NIPS. MIT Press, 2000, pp.
556–562.

23. H.-J. Lee, J. P. Robertson, and J. A. B. Fortes,
“Generalized cannon’s algorithm for parallel matrix
multiplication,” in Proceedings of the 11th Inter-
national Conference on Supercomputing, ser. ICS
’97. New York, NY, USA: Association for Comput-
ing Machinery, 1997, p. 44â51. [Online]. Available:
https://doi.org/10.1145/263580.263591

24. J. Leskovec and A. Krevl, “SNAP Datasets:
Stanford large network dataset collection,”
http://snap.stanford.edu/data, Jun. 2014.

25. X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkatara-
man, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen,
D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and
A. Talwalkar, “Mllib: Machine learning in apache spark,”
J. Mach. Learn. Res., vol. 17, no. 1, p. 1235â1241, Jan.
2016.

26. C. Misra, S. Bhattacharya, and S. K. Ghosh, “Stark:
Fast and scalable strassen’s matrix multiplication using
apache spark,” IEEE Transactions on Big Data, pp. 1–1,
2020.

27. j. . C. p. . S. y. . . d. . h. Nguyen Binh Duong Ta, title
= FC2: cloud-based cluster provisioning for distributed
machine learning.

28. L. Page, S. Brin, R. Motwani, and T. Winograd, “The
pagerank citation ranking: Bringing order to the web.”
Stanford InfoLab, Technical Report 1999-66, November
1999, previous number = SIDL-WP-1999-0120. [Online].
Available: http://ilpubs.stanford.edu:8090/422/

29. J. Park, , H. Kim, and K. Lee, “Evaluating concurrent ex-
ecutions of multiple function-as-a-service runtimes with
microvm,” in 2020 IEEE 13th International Conference
on Cloud Computing (CLOUD), 2020.

30. J. Park and K. Lee, “Performance prediction of sparse
matrix multiplication on a distributed bigdata processing
environment,” in 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems
Companion (ACSOS-C), 2020, pp. 30–35.

31. M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Park,
M. J. Anderson, S. G. Vadlamudi, D. Das, S. G. Pudov,
V. O. Pirogov, and P. Dubey, “Parallel efficient sparse
matrix-matrix multiplication on multicore platforms,” in
High Performance Computing, J. M. Kunkel and T. Lud-
wig, Eds. Cham: Springer International Publishing,
2015, pp. 48–57.

32. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Com-
puter Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

33. S. Seo, E. J. Yoon, J. Kim, S. Jin, J. Kim, and S. Maeng,
“Hama: An efficient matrix computation with the mapre-
duce framework,” in 2010 IEEE Second International
Conference on Cloud Computing Technology and Sci-
ence, 2010, pp. 721–726.

34. A. Shahidinejad, M. Ghobaei-Arani, and M. Masdari,
“Resource provisioning using workload clustering in
cloud computing environment: a hybrid approach,” Clus-
ter Computing, vol. 24, pp. 1–24, 03 2021.

35. C. Shen, W. Tong, K.-K. R. Choo, and S. Kausar, “Per-
formance prediction of parallel computing models to an-
alyze cloud-based big data applications,” Cluster Com-
puting, vol. 21, 06 2018.

36. J. Snoek, H. Larochelle, and R. P. Adams, “Prac-
tical bayesian optimization of machine learning al-
gorithms,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems
- Volume 2, ser. NIPS’12. USA: Curran Asso-
ciates Inc., 2012, pp. 2951–2959. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2999325.2999464

37. M. Son and K. Lee, “Distributed matrix multiplication
performance estimator for machine learning jobs
in cloud computing,” in 2018 IEEE 11th Interna-
tional Conference on Cloud Computing (CLOUD),
vol. 00, Jul 2018, pp. 638–645. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00088

38. A. Spark, “Apache spark mllib distributed matrix compu-
tation,” https://goo.gl/Vnii2M, 2017, [Online; accessed
20-Nov-2017].

39. R. A. van de Geijn and J. Watts, “Summa: Scalable
universal matrix multiplication algorithm,” Austin, TX,
USA, Tech. Rep., 1995.

40. S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and
I. Stoica, “Ernest: Efficient performance prediction for
large-scale advanced analytics.” in NSDI, 2016, pp. 363–
378.

41. A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues,
“Orchestrating the deployment of computations in
the cloud with conductor,” in Presented as part of
the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12). San Jose,
CA: USENIX, 2012, pp. 367–381. [Online]. Available:
https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/wieder

42. N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith,
and R. H. Katz, “Selecting the best vm across multiple



14 Jueon Park, Kyungyong Lee

public clouds: A data-driven performance modeling
approach,” in Proceedings of the 2017 Symposium on
Cloud Computing, ser. SoCC ’17. New York, NY,
USA: ACM, 2017, pp. 452–465. [Online]. Available:
http://doi.acm.org/10.1145/3127479.3131614

43. Y. Yu, M. Tang, W. G. Aref, Q. M. Malluhi, M. M.
Abbas, and M. Ouzzani, “In-memory distributed ma-
trix computation processing and optimization,” in ICDE,
April 2017, pp. 1047–1058.

44. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in Presented as
part of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12). San Jose,
CA: USENIX, 2012, pp. 15–28.


