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Abstract Sparse matrix multiplication (SPMM) is widely 1 Introduction

used for various machine learning algorithms. As the
applications of SPMM using large-scale datasets be-
come prevalent, executing SPMM jobs on an optimized
setup has become very important. Execution environ-
ments of distributed SPMM tasks on cloud resources
can be set up in diverse ways with respect to the in-
put sparse datasets, distinct SPMM implementation
methods, and the choice of cloud instance types. In
this paper, we propose S-MPEC which can predict la-
tency to complete various SPMM tasks using Apache
Spark on distributed cloud environments. We first char-
acterize various distributed SPMM implementations on
Apache Spark. Considering the characters and hard-
ware specifications on the cloud, we propose unique
features to build a GB-regressor model and Bayesian
optimizations. Our proposed S-MPEC model can pre-
dict latency on an arbitrary SPMM task accurately and
recommend an optimal implementation method. Thor-
ough evaluation of the proposed system reveals that a
user can expect 44% less latency to complete SPMM
tasks compared with the native SPMM implementa-
tions in Apache Spark.
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Large-scale datasets from real-world applications and
their relationships can be represented using a graph.
In a graph, an edge between two nodes means they
are related in some ways. An edge can have a weight
value depending on the datasets. Friends connections
and users subscriptions in a social network, product-
review ratings in an e-commerce site, user-movie rat-
ings in a movie-streaming service, and hyperlinks from
a source to a destination website can be expressed us-
ing a graph. For extracting valuable information from
graph-structured datasets using several types of ma-
chine learning algorithms, there is need to express the
datasets in a computer-friendly format. Moreover, many
data mining algorithms require input datasets to be
represented in a sparse matrix format. For example, the
power method implementation of the PageRank algo-

rithm [28] and nonnegative matrix factorization (NMF) [22],

which is widely used for various recommendation sys-
tems, requires input datasets to be represented in a
matrix format.

Furthermore, processing various types of big data

requires considerable computing power and general-purpose
distributed computing platforms, such as Apache Hadoop [11]

and Spark [44]. It also requires a set of application
programming interfaces (APIs) that abstract complex
fault-tolerance mechanisms in a distributed environ-
ment, task scheduling with heterogeneous resources, and
guaranteeing scalability as demand changes. Using the
high-level APIs of Apache Spark, we can implement
various machine learning algorithms conducted on a
shared-nothing distributed computing environment us-
ing the MLLib [25]. This MLLib [25] provides various
matrix operations on a distributed computing environ-
ment [2], including matrix multiplication and factor-
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ization, which are the core kernels of many machine
learning algorithms.

Generally, running an Apache Spark task for data
mining jobs requires huge computing power. To meet
various computing demands, running a Spark cluster in
a cloud computing environment becomes a norm. When
using cloud resources, the users have to choose compute
instances from the perspective of response time and
cost. Cloud computing service evolves very fast, and it is
challenging for ordinary users to follow updates and ap-
ply them to their analysis environment. For instance, at
the time of writing, Amazon Web Services (AWS) pro-
vides over 100 Elastic Computing Cloud (EC2) instance
types, which users have to decide to satisfy application
needs.

In addition to the cloud computing service diversity,
there are many challenges when running data mining al-
gorithms with SPMM using Apache Spark MLLib [25].
Input datasets for an SPMM task can be diverse as they
can be generated from various sources, such as social
network service [24]. In addition, there are various ways
of implementing SPMM tasks in a distributed environ-
ment that even adds complexity to optimize the exe-
cution. Despite this complexity, almost every guidance
optimally operated SPMM tasks using Apache Spark
on a cloud environment.

To help users better understand the distributed SPMM

execution characteristics and guide optimal implemen-
tation of arbitrary SPMM tasks with different numbers
of rows and columns, densities, multiple implementa-
tion methods, and cloud instance types, we propose S-
MPEC, Sparse Matrix Multiplication Performance Es-
timator on Cloud. We first propose a set of features that
represent the characteristics of input matrices, multipli-
cation implementation details, and underlying cloud in-
stances. Using the proposed features, S-MPEC utilizes
a GB regressor [12] modeling to predict latency of vari-
ous SPMM tasks. To find the optimal hyper-parameters
of the proposed model, we employed the Bayesian op-
timization [36] algorithm. Using the generated model,
S-MPEC predicts the latency of a given SPMM work-
load and recommends proper cloud instance types and
SPMM implementation methods. We thoroughly eval-
uated S-MPEC under realistic scenarios and discovered
that S-MPEC could improve the average response time
of SPMM 44% compared to the Apache Spark MLLib’s
native implementation by switching appropriate multi-
ply implementation methods dynamically.

In summary, the main contributions of this paper
are as follows.

— We discovered the performance variability of a dis-
tributed SPMM operation on Apache Spark and

the lack of general guidance regarding performance
characteristics.

— We propose features that can represent distributed
SPMM tasks and cloud instances.

— We build a model that accurately predicts the la-
tency of arbitrary SPMM tasks on various cloud in-
stances.

— We assess the practicality of building a model that
predicts a distributed SPMM performance for di-
verse scenarios to improve the overall performance.

This paper is organized as follows: Section 2 presents
related work in the literature. Section 3 discusses vari-
ous algorithms to implement SPMM with Apache Spark

and presents the performance variability. Section 4 presents

the proposed model that predicts SPMM performance,
and Section 5 thoroughly evaluates the proposed model.
Section 6 concludes this paper with future work.

2 Related Work

Optimizing Matrix Multiplication : Optimization
of matrix multiplication in an HPC environment has
been thoroughly studied in the literature. Researchers
have carried out many studies on minimizing commu-
nication overhead using a highly optimized MPI library
or carefully designing algorithms on multi-core shared
memory machines, such as SUMMA [39], CARMA [g],
Patwary et. al. [31], and ScalaPack [6]. Despite the tech-
nological advancement in the HPC research community,
not much work have been done to characterize and op-
timize performance of SPMM on a distributed shared-
nothing computing environment, especially for Apache
Spark [44] and Hadoop [11], which are popular big-data
processing engines. The proposed S-MPEC provides a
way to build an efficient environment to conduct dis-
tributed SPMM tasks using Apache Spark. The previ-
ous work focused on the optimization of SPMM on a
single machine in a HPC or specialized hardware. They
are complementary for our proposed work because each
executor in a Spark cluster can equally apply such op-
timization techniques proposed in the HPC domain.
Matrix Multiplication on Big-Data Process-
ing Framework : Kim et. al. [19] and Marlin [13]
proposed an algorithm to predict matrix multiplication
performance of Apache Spark. Marlin proposed to use
matrix size to decide optimal scheduling of multiplica-
tion tasks, whereas Kim et. al. suggested using various
matrix multiplication characteristics to predict perfor-
mance. Despite the improvement in the Kim et. al. and
Marlin approaches over the native Spark feature, both
work support only dense matrix multiplication which
limits the work’s applicability. In addition, Marlin does
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not support various cloud instances in the recommenda-
tion. HAMA [33] proposed a MapReduce program using
Apache Hadoop to perform distributed matrix multipli-
cation, but it supports only dense matrix cases. Yu. et.
al. [43] thoroughly analyzed shuffling overhead of the
distributed matrix multiplication and proposed a task
execution plan concerning the network overhead. De-
spite the large amount of work involved in the course of
shuffling, other factors also significantly impact its per-
formance. Moreover, aside from the dense matrix multi-
plication, an SPMM task can be implemented in more
diverse ways. This factor has to be considered when
choosing an optimal execution plan. Park et. al. [30]
proposed an algorithm that predicts the latency of per-
forming SPMM tasks, but they did not consider a cloud
environment where diverse instance types exist.

Stark [26] presented an implementation of Strassens’s
matrix multiplication [15] on Apache Spark. The au-
thors showed that their implementation outperforms
the native Spark MLLib implementation and Marlin [13].
JAMPI [10] is an implementation of Cannon’s distributed
matrix multiplication [23] on Apache Spark combining
distributed message passing and Spark’s barrier exe-
cution mode. Comparing to the Spark MLLib imple-
mentation, JAMPI showed up to 24% faster response
time. Despite of the performance improvement over the
baseline implementations, Stark and JAMPI supports
multiplication of two dense matrices only, and it lim-
its the applicability of the work because sparse matrix
representation is widely adopted in big-data processing.

Optimal Big-Data Processing Framework Con-
figuration : Herodotou et. al. proposed Starfish [14]
that finds optimal configurations for MapReduce [7]
workloads, but it did not consider various cloud in-
stance types. Jalaparti et. al. proposed Bazaar [16],
and Wieder et. al. proposed Conductor [41]. They find
cost based optimal cloud instances for given workloads
on Hadoop, but they did not evaluate for SPMM, so
complex characteristics of SPMM cannot be considered
from them. Cheng et. al. proposed CAST [5] that helps
in select storage on cloud, and Klimovic et. al. proposed
Selecta [20] that provides an optimal configuration for
cloud storage and instance. They showed good accu-
racy on prediction, but they use simple workloads, such
as sort, join, grep and k-means that cannot consider
SPMM'’s complex characteristics.

Optimal Cloud Environment for Machine Learn-

ing : To help users build optimal cloud environments
and process a large-scale of datasets, Ernest [40] pro-
posed an algorithm that predicts the performance of

various machine learning jobs with different input datasets

and various cloud instance types. The authors used
a non-linear regression for their prediction model. To

achieve a similar goal with Ernest, PARIS [42] applied
Random Forest [3] modeling, and CherryPick [1] adopted
Bayesian Optimization to select the optimal set of ex-
periments on cloud. FC? [27] presents a system which
recommends optimal cloud instances for distributed ma-
chine learning. The system does not reference machine
learning algorithm source code but use resource infor-
mation and scalability property of a machine learning
task. The authors of FC? provide a web-interface so
that users can easily access the proposed system. The
proposed work focused on predicting general machine
learning jobs. However, the task of characterizing the
SPMM is very different from a general machine learn-
ing job whose main computation kernel is not the ma-
trix multiplication. Son et. al. [37] revealed that the in-
put dataset for a matrix multiplication task is distinct
from general machine learning jobs, and the perfor-
mance prediction of matrix multiplication jobs should
be treated separately.

To better evaluate cloud environment for big-data
processing, Shen et. al. [35] proposed a model to as-
sess performance of cloud services for various machine
learning jobs. S-MPEC is complementary for the work,
and it can apply the assessment algorithm proposed
in the work to improve execution time accuracy for
general workload other than SPMM. Shahidinejad et.
al. [34] proposed a workload scheduling algorithm on
a cloud computing environment. The authors proposed
to categorize heterogeneous workloads using a K-Means
algorithm and make a scaling decision using a tree-
structure branching algorithm. Using the proposed al-
gorithm, most SPMM tasks can be clustered into a
same category and miss various SPMM task character-
istics that is presented in this paper. Thus, workload-
specific parameters need to be considered in the schedul-
ing as presented in this work.

3 Distributed Sparse Matrix Multiplication

To store and access a sparse matrix using Apache Spark,
MLLib [25] provided distributed sparse matrix repre-
sentations: indexed-row and block matrices. Both ap-
proaches use resilient distributed dataset [44] as the un-
derlying mechanism to store the sparse matrices, while
guaranteeing fault-resilience. In the indexed-row repre-
sentation, an input matrix is stored in a row-wise man-
ner where a row is stored as a sparse vector locally in
the distributed servers. To store blocks in a column-
major order, we transpose an input matrix and store it
in the indexed-row format. Moreover, in the block rep-
resentation, an entire sparse matrix is partitioned into
either the row and/or column direction. After partition-
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Fig. 1: Various SPMM implementation with distributed
sparse matrices

ing, a block of the sparse matrix is stored in compressed
sparse column (CSC) format.

Using the distributed representations of sparse ma-
trices, we highlight four distributed SPMM implemen-
tations in Figure 1. For the brevity of the descriptions,
we define A, B, and C, as the left, right, and the result
matrix, which is C = A x B. We use ¢ and j to denote
an arbitrary row index of A and a column index of B.
Moreover, k denotes an arbitrary column index of A
and row index of B. The capital letters I, K, and J de-
note the corresponding dimension size. In each matrix,
we use subscripts with a parenthesis to denote the row
and column indices. For example, A; ) indicates an
element in the i-th row and k-th column of matrix A.
The * notation in the row or column index of a matrix
denote an entire row or column. For example, A ; ,) in-
dicates the i-th row of a matrix A. It should be noted
that N expresses the number of Spark worker nodes to
perform an SPMM task and assume that an input ma-
trix can be equally partitioned among N worker nodes.

3.1 Outer-Sparse SPMM

Figure la illustrates an SPMM implementation of the
outer sparse product. In the method, A is partitioned
into column-wise (A, ), and B is partitioned into row-
wise (Bg,«). A GroupBy operation is applied for k.
In each grouped result, an outer product is conducted
(A, @By ) that results in an intermediate output ma-
trix of size I x J. During the outer product operation,
each vector remains in a sparse status. We performed
the element-wise summation to derive the final result,

C.

Shuffle overhead: The shuffle overhead of two sparse
matrices multiplication is majorly impacted by the dis-
tribution of the number of non-zero (NNZ) elements
which is not a static value. However, to compare the
shuffle overhead of different SPMM implementations,
we omitted the impact from the NNZ distribution in
each method. In the outer SPMM implementation, a
worker node is responsible for I x % elements from A
and % x J from B. Thus, an executor process fetches
necessary partitions from A and B that is I x %—i—% xJ,
which happens N times. Each worker node conducts
multiplication and generates an output matrix of size
I x J that is summed element-wise. Hence, the shuffling
overhead of the outer SPMM becomes Equation 1.

Shuffleoyter = K X (I+J)+ N x I xJ (1)
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Methods Dominant Shuffle ToDense | Native
Outer N xIxJ No No
Inner NxKx({I+J) No No

IndexedRow NxKx((I+J) Yes Yes
Block VN x K x (I+J) Yes Yes

Table 1: Performance characteristics of different SPMM
implementations

3.2 Inner-Sparse SPMM

Figure 1b explains an SPMM implementation, which
uses an inner sparse product. In the method, C; ; is
generated by conducting an inner product of a row from
the left matrix and a column from the right matrix,
C;; = A; . - B, ;. In the inner-product operation, we
kept each vector in a sparse state. Stitching scalar val-
ues from the inner-product operations results in the
final output matrix, C.

Shuffle overhead: In the inner SPMM implemen-
tation, a worker node is responsible for % x K elements
from A and K x % elements, which are from B. An
executor process fetches the necessary partitions from
A and B. That is % x K+ K x % which happens N2
times. After conducting multiplication in each executor,
we aggregated the final output in one place, resulting in
shuffling overhead of I x J. The total shuffling overhead
of the inner SPMM becomes Equation 2.

ShuffleinneT:NXKX(I+J>+IXJ (2)

3.3 IndexedRow Partitioning SPMM

Figure 1c displays an SPMV implementation using the
indexed-row data structure provided by Spark [38]. The
multiplication method is natively supported by Apache
Spark. In this method, the right matrix, B, should exist
locally in a Spark driver. A driver broadcasts the ma-
trix to all workers after converting it to a dense matrix.
In each worker node with multiple executors, the inner
product between a sparse vector (A; ) and a dense vec-
tor (B, ;) is calculated by Cj ;. The shuffling overhead
of indexed-row is same as inner-sparse in the Equa-
tion 2 because the matrix distribution mechanism is
the same.

3.4 Block Partitioning SPMM

Furthermore, Figure 1d shows an SPMM method us-
ing a distributed block-partitioning mechanism that is
natively supported by Apache Spark [38]. In the block-
partitioning scheme, we divide the matrix into the row
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Fig. 2: Multi Source BFS algorithm as a workload to
evaluate various distributed SPMMs

and column directions. To calculate a block of the out-
put matrix, the corresponding entire rows from the left
matrix and columns from the right matrix are fetched
to a node that is used in the calculation. During mul-
tiplication, the left matrix is kept in a sparse CSC for-
mat, whereas the right matrix is converted into a dense
matrix format.

Shuffle overhead: For brevity of the analysis, we
assume that N worker nodes can divide the input ma-
trices evenly [19]. A worker node that is responsible for
an output block fetches \/iﬁ x K from A and K X ﬁ
from B. After each worker’s node performs multipli-
cation locally, the final result is gathered that results
in shuffle overhead of I x .J across all executors. Thus,
the total shuffling overhead of block SPMM becomes
Equation 3.

Shuf fleyioey = VN X K x (I+J)+1xJ (3)

We do not compare the number of multiply opera-
tions for different SPMM implementations because the
value is the same across all the implementation mecha-
nisms [21].

Table 1 summarizes the characteristics of the four
distinct SPMM implementations, as shown in the first
column. The second column shows the dominant fac-
tor that impacts the overall shuffle overheads. We can
see that the shuffle overhead is mainly dependent on
the shape of the left and right matrices. The third col-
umn indicates whether there exists conversion from the
sparse format to the dense format. The Indexed Row and
Block requires the right matrix to be transformed into
a dense format, whereas the left matrix remains in a
sparse format. The fourth column indicates whether
the corresponding SPMM implementation is natively
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Fig. 3: Sparse matrix multiplication using Apache Spark with different matrix distribution mechanisms

supported by the Apache Spark, MLLib [38]. Notably,
Spark does not natively support the outer product and
inner sparse product. Thus, we implement these our-
selves to make S-MPEC cover wide range implementa-
tions.

3.5 Performance Dynamics of Distributed SPMM

To understand the performance of different SPMM mech-
anisms presented in Figure 1, we conducted a perfor-
mance evaluation on different heuristics. In the experi-
ments, we performed SPMMs using a left sparse matrix
and a right matrix with various densities. To generate
a realistic SPMM workload, we employed the multiple-
source breadth-first search (BFS) algorithm [17], which
is explained in Figure 2. The algorithm repeatedly per-
forms an SPMM operation with a left matrix built from
an input sparse dataset and a right matrix indicating
the source to the destination mappings. A right ma-
trix for a multiply operation is first defined by setting a
source ID node to 1 and others to 0 in each column. The
result of the left and right matrix multiplications indi-
cates the path from the source to the destination. Dur-
ing iterative multiplications, a result matrix becomes
the right matrix for the next iteration, indicating the
path connection in multiple hops. Because a right ma-
trix is updated in every iteration, the density changes
in every iteration. Thus, it can provide various multi-
plication scenarios by operating in multiple iterations.
To evaluate the performance of the four different
distributed implementations of SPMM in Figure 1, we
used Orkut (Figure 3a), DBLP (Figure 3b), and YouTube
(Figure 3c) datasets as left matrices. The datasets are
downloaded from the SNAP site [24]. For the right ma-
trix, we set a random source element to be 1, and up-
date the right matrix in every iteration using a result

matrix of a previous SPMM. To investigate the char-
acteristics from various multiplication scenarios, we set
the density of the right matrix to 0.001, 0.01, 0.05, and
0.1. Because the right matrix becomes denser in differ-
ent ratios for a distinct left matrix dataset, we choose
cases in which the right matrix density is the closest the
configured densities. In each figure, different distributed
SPMM implementations are expressed on the horizon-
tal axis. Each SPMM method has four bars that repre-
sent the performance of the distinct right matrix densi-
ties. The vertical axis indicates the normalized latency
for the best performance of the same right matrix den-
sity with different distributed SPMM mechanisms. The
experiments were conducted on AWS Elastic MapRe-
duce version 5.27.0 with one master and four workers,
and we used r5.2zlarge instances. All workload scenar-
ios were conducted three times, and the median value
was selected from the results to remove the impact from
experimental noise in cloud [29,7].

To represent the relative performance difference of
the SPMM method with their corresponding different
right matrix densities, we grouped the bars of the dif-
ferent densities with the same SPMM method. For ex-
ample, the outer sparse in Figure 3a, exhibits a better
performance than other SPMM methods when the right
matrix density is 0.001, but the performance degrades
significantly when the density of the right matrices in-
creases. When the right matrix density becomes 0.1,
and the outer sparse implementation shows about seven
times more latency than the best case (indezed-row)
for the Orkut dataset. Different input datasets show a
different pattern of performance changes with different
right matrix densities. Orkut dataset shows over seven
times performance difference. For DBLP dataset, it is
about two and a half times. Furthermore, the perfor-
mance change pattern is not consistent for all SPMM
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implementations. For inner-sparse implementation, the
latency keeps increasing as the right matrix densities
increase for Orkut dataset. However, for the Youtube
dataset, the latency keeps decreasing as the right ma-
trix densities increase. From the figures, we can observe
that the performance difference among different SPMM
implementations, right matrix densities, and left matrix
characteristics are significant and noticeable. Unfortu-
nately, we cannot determine a globally optimal SPMM
implementation, which can result in considerable per-
formance variability for various data mining jobs im-
plemented on Apache Spark.

4 S-MPEC Architecture

As we cannot determine a globally optimal SPMM im-
plementation, we propose S-MPEC to recommend the
optimal distributed SPMM execution environment. S-
MPEC receives details about input matrices to conduct
a SPMM task from the user. Using the input matrices
information, S-MPEC predicts latency to complete an
input workload under four different SPMM implemen-
tations and cloud instance types. In addition, S-MPEC
helps users choose optimal environments to complete
the input workload considering latency and cost using
the predicted latency.

4.1 Modeling Distributed SPMM Performance

The performance of distributed SPMM implementa-
tions differs significantly as the input datasets vary. It

is very critical to predict the estimated latency of an ar-
bitrary SPMM task because it is among the core kernel
of many machine learning jobs. To predict the perfor-
mance of various SPMM tasks under diverse cloud envi-
ronments, we first propose features to represent charac-
teristics of various SPMM workloads and cloud instance
types. Using the proposed features, S-MPEC builds a
prediction model using a GB-regressor [12] that ac-
curately represents non-linear interactions among fea-
tures. Furthermore, S-MPEC applies Bayesian optimiza-
tion [36] to determine the optimal hyper-parameters.

In building a prediction model, the first step is how
to determine a representative set of features. In sparse
matrix, we use the dimension of left and right matrices
and name them as Ir, lc, and rc to denote our represen-
tative set of features, where Ir, lc, and rc is the num-
ber of left matrix rows, left matrix columns, and the
right matrix columns, respectively. Because the target
workload of the proposed model is a sparse matrix, the
density of a matrix is an important factor that must
be considered. We call it [ — density and r — density
for left matrix density and the right matrix density, re-
spectively.

In addition to the left and right densities, we also
add the number of nonzero (nnz) elements of the left
and right matrices, | — nnz and r — nnz, accordingly.
Note that the nnz of a matrix is already reflected in
the density feature because it is calculated by dividing
the nnz (I — nnz for a left matrix) by the total number
of elements (Ir x lc for a left matrix). Ideally, such a re-
lationship should be captured while building a model.
Deep neural-net [32] is good at finding hidden relation-
ships from a very large-scale input dataset. However, it
requires a significant number of input datasets to detect
hidden characteristics, which is impractical to generate
the numerous input datasets required for SPMM tasks.
Thus, we add the nnz and density feature manually.

We add Ir x rc to represent the dimension of an
output matrix from the SPMM task. Because we tar-
get sparse input datasets, the size and NNZ elements
from an output matrix cannot be estimating before the
actual computation. We expect that the combination
of I —nnz, r —nnz, and Ir X rc can estimate the over-
head of the node that is responsible for storing an out-
put matrix. We add [ — nnz + r — nnz to represent the
shuffling overhead for all nodes during computation. To
consider the actual number of product computations in
the sparse matrix format, we add [ — nnz x r — nnz.

Referencing the performance estimation of the dis-
tributed dense matrix multiplication using Spark [19], [37],
we add Ir x lc X rc and Ir X lc+lc X rc, which represent
the total number of product operations and the shuffle
overhead, respectively. To build a unified model that is
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applicable for the four methods of an SPMM operation,
we add a method feature categorically.

To express the characteristics of various cloud in-
stances, we add hardware features that are the num-
ber of CPU cores, CPU clock speed, memory size, disk,
and network bandwidth of cloud instance types. To use
practical disk IO bandwidth, we conducted dd work-
loads, whereas the iperf3 command in the Function-
Bench [18] is used for the network bandwidth.

We build our prediction model using the GB regres-
sor [12] with the features that are mentioned above.
The GB regressor produces a prediction model in the
form of an ensemble of weak prediction models, typ-
ically decision trees. It produces a classifier based on
the classifier’s accuracy generated on the previous step
and ensembles those classifiers to generate a more ac-
curate final model.

In GB regressor modeling, various hyper-parameters
are used, such as learning_rate, max_depth, gamma,
and so on. It is not easy to find the best hyper-parameter
combination in modeling. Although experimenting with
all possible combinations of hyper-parameters provides
the best hyper-parameters, it takes a long time. There-
fore, we employed the Bayesian optimization to deter-
mine the optimal hyper-parameters with extra minimal
overhead.

Figure 4 shows the overall architecture of the pro-
posed S-MPEC. A user submits workload characteris-
tics of a SPMM task, such as the dimension of left and
right matrices, and densities. S-MPEC equips a model
that is built offline using various SPMM scenarios with
diverse cloud instance types. Using the model, S-MPEC
predicts the latency of the input workload scenario for
various cloud instance types and sizes.

5 Evaluation

To present the applicability and advantage of predict-
ing the performance of SPMM operations with vari-
ous sparse matrices, distributed implementation, and
cloud instance types, we conducted experiments cover-
ing thorough scenarios. To present various input dataset,
we used Orkut, DBLP, and Youtube graph datasets
from SNAP [24]. The Orkut dataset contains 3,072,441
nodes, 117,185,083 edges, and 234,370,166 nnz. The
DBLP dataset has 317,080 nodes, 1,049,866 edges, and
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Fig. 5: Prediction accuracy of a model built with GB
regressor

cd.4xlarge, r5.zlarge, r5.2zlarge, and r5.4zlarge as our
cloud instances. ¢b instances are designed for compute-
intensive workloads, while r5 instances are optimized
for workloads that require large amounts of memory.
For example, ¢5.xlarge instance offers 2 CPU cores and
4GB memory, while r5.xlarge instance offers 2 CPU
cores and 32GB memory. 5 instances provides 8 times
more memory than ¢5, but CPU core of ¢5 instances of-
fer 3.0GHz clock rate, while 5 instances offer 2.5GHz.
Thus, some matrix multiplication scenarios can be com-
pleted with 75 instances, but ¢5 instances cannot com-
plete because of the memory limitation. Using the input
dataset as a left matrix, we conducted multi-source BFS
algorithms in multiple iterations using Apache Spark.
To reproduce a practical BFS scenario, we varied the
sparsity of the right matrix to different degrees. The ex-
periments were conducted on AWS Elastic MapReduce
version 5.27.0 with one master and four workers. All the
experiments are conducted three times, and we take
median for presentation. We used Python 3.8.5 with
zgboost 1.2 and bayesian-optimization 1.2 libraries in
building the optimized prediction model from the ma-
trix multiplication results.

5.1 Model Accuracy for Distinct SPMM
Implementations

We first evaluated the GB-regressor model’s prediction
accuracy, which is S-MPEC’s prediction modeling al-

2,099,732 nnz. The Youtube dataset also contains 1,134,890 gorithm, with the proposed feature sets. We performed

nodes, 2,987,624 edges, and 5,975,248 nnz. We applied
four distributed SPMM implementations to the input
datasets, but some implementations could not complete
the given workloads because of the memory limitation.

K-fold cross validation ten times, dividing the training
and test datasets into an 8:2 ratio. We measured the
prediction accuracy using R?, and the mean absolute
percentage error (MAPE) metric. The R? metric mea-

We used six AWS EC2 instances types: c5.xlarge, c5.2xlargesures the degree of resemblance of the predicted value
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Fig. 6: Prediction accuracy of a model built with NNLS

to the true value. The higher R? value represents an
accuracy of a model with the maximum value of 1.0.

Figure 5 displays the R? value (higher is better)
in the primary vertical axis whose values are repre-
sented in the bar with minimum and maximum indi-
cators. The MAPE value (lower is better) is shown
in the secondary vertical axis, where their values are
represented as star marks. The horizontal axis, reveals
the distributed SPMM implementations. The first hor-
izontal axis value, All, indicates a case that a predic-
tion model is built using datasets from all SPMM im-
plementation methods, and only the All model con-
tains method feature. The latter four values indicate
the prediction accuracy of a model built from training
datasets, generated from each method explained exclu-
sively in Section 3. We observe that the models built
from exclusive datasets regarding the SPMM imple-
mentation method exhibit better prediction accuracy
than the unified model. However, even the worst per-
forming unified All method demonstrates accurate re-
sults with 0.95 of R? and a MAPE of about 7.6%. The
best prediction accuracy is achieved with the Block im-
plementation for R? metric. Overall, we can observe
that the proposed S-MPEC can accurately model the
latency of various SPMM scenarios with diverse inputs.

To present superb prediction accuracy for a model
with a GB-regressor algorithm, we developed another
model using the nonnegative least square (NNLS) linear
regressor algorithm [4]. The result is presented in Fig-
ure 6. The overall prediction accuracy pattern is very
similar to that presented with the GB-regressor algo-
rithm. However, the degree of accuracy is significantly
lower. For instance, the R? value of the All method is
only about 0.6, and MAPE is over 60%. From the re-
sult, we conclude that there is a non-linear interaction
among the suggested features for various SPMM imple-

mentations with diverse cloud instance types, because
a linear model cannot capture such characteristics ef-
fectively.

In the modeling step, S-MPEC utilizes the Bayesian
optimization algorithm to find an optimal set of pa-
rameters for the GB-regressor model. Table 2 presents
parameters that users can set during the GB-regressor
modeling and the default values from the zgboost li-
brary to show the performance improvement from the
hyper-parameter search step. The last column shows
the optimal hyper-parameters for the prediction model.
In running Bayesian optimization, we set the objective
metric as —1 x (M APE x 10 + RMSE) that is mini-
mized during the step. We multiplied the MAPE value
by ten to fit the range of the absolute value with the
RMSE. Through the hyper-parameter optimization, we
can see that the prediction accuracy improves signifi-
cantly for all the evaluation metrics, and it contributes
to improving the prediction accuracy of S-MPEC. Com-
paring to the default configuration, S-MPEC adopts
a complex model with a larger number of estimators
which implies the complexity of the prediction task.

Default S-MPEC
n_estimators 100 9304
colsample_bytree 1 0.972
learning_rate 1 0.019
max_depth 6 5
gamma 0 6.63
subsample 1 0.7
R? 0.93 0.97
MAPE 13.51 7.32
RMSE 45.23 34.71

Table 2: Improved performance by using Bayesian op-
timization

5.2 Model Accuracy for Distinct Cloud Instance Types

To evaluate the prediction accuracy of S-MPEC for
different cloud instance types, we build a model of S-
MPEC after excluding a specific instance type (K-fold
cross validation for a cloud instance type). Figure 7
shows the prediction accuracy of various SPMM imple-
mentations for different instance types, and the hor-
izontal axis represents a target instance type to pre-
dict. We build a model after excluding a target instance
type on the horizontal axis in our modeling steps. Using
the model built, we predict the latency of the various
SPMM scenarios by setting the target instance type
appropriately in the features. The primary vertical axis
shows the R? value which is represented as a bar, and
the secondary vertical axis shows the MAPE value that
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Fig. 7: Prediction accuracy for various cloud instance types

is represented as a star marker. At this stage, we show
three SPMM implementation methods because other
SPMM implementation methods present a similar pat-
tern. In choosing two implementations for presentation
to demonstrate our claim, we considered the uniqueness
in the operation (whether transforming a right matrix
to a dense format). From the figures obtained, we can
observe that S-MPEC predicts the latency of various
SPMM tasks when they are executed on diverse cloud
computing instances with MAPE less than 11%. On
indexed-row, MAPE values of r5 instances are relatively
higher than ¢5, because they could not get enough ex-
periment results from c¢5 instances. Please note that
the indered-row method requires more memory than
other matrix multiplication methods and ¢5 instances
have difficulties in completing the task. This experiment
result demonstrates the applicability of S-MPEC in a
cloud computing environment, where various instances
are supported by many public vendors.

Using a GB-regressor model with Bayesian opti-
mization for optimal hyper-parameter selection, S-MPEC
accurately modeled the response time of various dis-
tributed SPMM implementations with the proposed fea-
tures when they are executed using Apache Spark on
various cloud environments. To understand which fea-
tures make significant contributions during modeling,
we calculated the feature importance, while building
the model. Figure 8 indicates the six most important
features for the various distributed SPMM implemen-
tations. Each figure reveals the relative importance of
each feature. The importance is calculated by count-
ing the number of times a feature is selected during
the decision tree build process [9]. For All model, the
method feature is the most dominant feature which in-
dicates the drastic latency difference of different SPMM
implementation. Other implementations consider both
matrix features and hardware features as important
to make accurate prediction in diverse environments.
Most methods consider cores as an important feature.

If given memory is enough to run the workload, the
number of CPU cores become the key factor to process-
ing tasks in parallel. Following cores, (l—nnz+r—nnz)
is an important feature that represents the shuffle over-
head. The compute overhead (I —nnz x r —nnz) is also
an important factor to decide the latency. Although we
added important features for distributed dense matrix
multiplication, which were presented in [37], the fea-
tures do not show a noticeable influence, which indi-
cates a drastic difference in the dense and sparse matrix
multiplication task characteristics. For SPMM tasks,
the density of left and right matrices is more important
than the dimensions of left and right matrices.

Figure 8 showed the relative importance of proposed
features. To understand the impact of the important
features to the overall prediction accuracy, we built
models by adding few important features that cumu-
latively measured the prediction accuracy in Figure 9.
The horizontal axis represents the number of features
used in the modeling, whereas the features are added
in a cumulative manner in the order of the importance,
presented in Figure 8. For instance, the All implemen-
tation in Figure 9a of x-axis value of being three means
that three most important features (method, cores, and
(l—nnz+r—nnz)) are used in building our model. The
primary vertical axis shows the values of R?, and the
secondary vertical axis shows the MAPE value. From
the figures, we can deduce that a model built using only
top few important features shows accurate result which
implies that shuffling and computing overheads are the
dominant factors to decide SPMM performance in a dis-
tributed cloud environment. The result from Figure 8
and 9 shows that different SPMM implementations re-
quire different features to make an accurate prediction
model, and the models are difficult to be generalizable
which needs a specialized process for the prediction.

Using S-MPEC, users can choose an optimal SPMM
implementation method to execute a multiplication task.
Assuming that an input dataset is loaded into an Apache
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Fig. 10: Performance benefit of using S-MPEC over the
Apache Spark native SPMM implementations

Spark driver as an RDD object, users can easily decide
which SPMM implementation to execute considering
the input characteristics, such as densities of left and
right matrices. Please note that Indered-Row and Block
implementations are natively supported by Apache Spark
MLLib. Further, we release our implementation of Inner-
Sparse and Quter-Sparse as an open source to help
users choose when necessary.!

1 https://github.com/kmu-bigdata /spark-spmm-compute

To present the performance gain from using S-MPEC,
we tested various SPMM tasks with distinct input dataset
sizes. Each SPMM scenarios have different implementa-
tions for the best performance, and the result is shown
in Figure 10. The horizontal axis shows the different
SPMM mechanisms. We name the best performing im-
plementation method of each workload as ground truth
(GT), and S-MPEC (Proposed) recommends the pre-
dicted best implementation method using a proposed
model. To make recommendations, S-MPEC predicts
the latency when using four distinct methods and re-
turns the fastest completing SPMM method. The latter
four mechanisms use a single implementation method
statically, which means a user does not change SPMM
implementation based on the input datasets and sticks
to one corresponding implementation. The latter four
static implementation selection scenario is applied in
most cases for ordinary Spark users.

In the experiments, all implementations could not
complete some tasks because of memory limitations.
We mark such incomplete cases as N/A, and their val-
ues are shown in the secondary vertical axis as a star
marker. In the figure, the primary vertical axis shows
each method’s normalized latency on the horizontal axis
as a bar. We normalize latency to the GT value because
it consists of only the best performing implementation
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of each workload which is the fastest. Thus, the latency
value close to 1.0 implies good performance. In cal-
culating the normalized latency, we consider only the
cases when a given implementation successfully com-
pletes input workloads. As shown in the figure, the pro-
posed S-MPEC shows very good performance close to
GT. Two native Spark implementations (IndezedRow
and Block) show poor performance when compared to
the other two methods in terms of the number of N/A
picked because they force the input right matrix to
be transformed to a dense format, which causes out-
of-memory problems. This result represents the limita-
tion of the current Spark native implementation. From
the experiment result, we can conclude that S-MPEC
recommends the best performing implementations 87%
of cases. If we include top two performing implemen-
tation methods for recommendation, S-MPEC recom-
mends 96% of times correctly. Furthermore, it improves
the average latency by 44% on average over the Spark
native SPMM implementations that are IndexedRow
and Block.

6 Conclusion

This work presents S-MPEC, which accurately predicts
the latency of various SPMM tasks when they are ex-
ecuted on diverse cloud computing environments. Af-
ter summarizing various SPMM implementations in a
distributed environment, we demonstrated the perfor-
mance variability for diverse SPMM implementations
and input datasets that necessitates the performance
predictor for optimal performance. We proposed fea-
ture sets covering input sparse matrix and cloud in-
stance types to build a model that optimizes hyper-
parameters. We evaluated S-MPEC thoroughly under
realistic scenarios and showed that it improve the Spark
native SPMM performance by 44% on average.
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