LSTM model to forecast time series for EC2 cloud
price

Alkharif Sarah
Computer Science
Kookmin University
Seoul, South Korea

sara.alabdulaziz@gmail.com

Abstract—With the widespread use of spot instances in Ama-
zon EC2, which utilize unused capacity with unfixed price,
predicting price is important for users. In this paper, we try
to forecast spot instance price by using long short-term memory
(LSTM) algorithm to predict time series of the prices. We apply
cross validation technique to our data set, and extract some
features; this help our model to learn deeply. We make the
prediction for 10 regions, and measure the performance using
root-mean-square error (RMSE). We apply our data to other
statistical models to compare their performance; we found that
our model works more efficiently, also the error is decreasing
more with cross validation and the result is much faster. Based
on our result we try to find the availability zone that less become
over on-demand price and less changing price over time, which
help users to choose the most stable availability zone.

Index Terms—LSTM, AWS, spot instance, time series

I. INTRODUCTION

Cloud Computing becomes more popular with simple and
inexpensive way to access servers, run applications and store
any size of data, at anytime and anywhere with a fixed price.
Amazon EC2, which is the most famous example of cloud
computing, where they provide many instance types such as
General, Compute Optimized, GPU, Memory Optimized, and
Storage Optimized. With many types of instances, there are
different operating systems and more than 10 regions around
the world, ever region is independent but may one region has
isolated locations which know as availability zones.

In August, 2006, AWS opened up a new service called
spot instances sometime known as spot market, which used
unused capacity from on-demand with unfixed price. The user
can set the maximum amount of hourly pay and if the spot
market price is less than or equal to the user price, it can be
run. On the other hand, if at any time the cost is increasing,
the user then has just one minute to save his work before
instances shut down. Often, the spot instances price is lower
than the on-demand price. However, at some periods, spot
instance can grow higher than the on-demand price, which
is uncomfortable for users. In this project, we forecast the
spot instance price using long-short-term memory (LSTM) to
predict the time series of the prices. We apply cross validation
technique, and use root-mean-square error RMSE to evaluate
the performance.

Kyungyong Lee
Computer Science
Kookmin University
Seoul, South Korea
leeky @kookmin.ac.kr

Hyeokman Kim
Computer Science
Kookmin University
Seoul, South Korea
hmkim @kookmin.ac.kr

II. RELATED WORK

Time series is a collection of data which is in a temporal
order where the data is being collected through the time. As
an example of time series: spot instance price, temperature
and the stock market, all the observations are changed over
time. Many researchers try to forecast time series using variety
of deep learning algorithms and statistical models. With the
statistical models, we have already examined to forecast time
series using seasonal ARIMA as the best algorithm [5]. In this
work, we try to avoid the delay time during prediction. We can
solve the delay time problem by using Synthetic Gradients
technique [8], which saves the time when we train a massive
number of networks. Also, in time series prediction when we
make the model simple as moving average and autoregressive,
it works more efficiently [9]. In addition, our dataset shows
high correlation between observation, but has not a volume in
size enough to cover a whole seasonal pattern such as a year
[10]. Thus, we think neural network may work much better
than the classical time series models.

We build application work in real time with short period data
[11] like ours, where we import daily data for three months
to apply LSTM. From another research [12], we notice that k-
fold cross validation technique works more practically, but the
experiments should be independent. Based on the result from
other studies [13] [10] [14] [15], we try to fix our forecast by
using the best solution that we can get. Furthermore, based on
our analysis, we compared the result with some other statistical
algorithms.

I1I. MODEL

Deep learning models Artificial neural networks (ANN) by
Rosenblatt [7], though the basic concept of the ANN was
introduced by McCulloch and Pitts [6], were working well
with almost all type of datasets to simulate human brain where
the model learns to make prediction or classifier the data.
LSTM model one of neural networks family for sequence
prediction problems.

The benefit of LSTM is cell unit which tries to remember
the most crucial point in data. LSTM developed to fix the
exploding and vanishing gradient when training RNN; by
using a memory unit known as a cell unit or cell memory
¢ for a network. Cell unit is allowed to remember the output,



which helps the model to learn from all output of the sequence
data.

Yt

SoftMax

Ce—1 Ct

Al al 6f
. i i T
t—1 *

|
Xt

Fig. 1. The diagram of a LSTM building block.

The diagram in Figure 1 shows the most essential three
gates of LSTM model: update, forget and output gates. LSTM
can be described by Equations 1~6. Equation 1 computes a
candidate ¢;. The candidate ¢; has own parameters which are
the weight w, and the bias b.. The update gate u;, which is
computed in Equation 2, has parameters which are the weight
w,, and the bias b,. They help the model to decide when it
updates the memory cell by using a sigmoid function; if an
output of the sigmoid function is close to one, it is updated,
and it is close to zero, it is ignored. The result from candidate
¢; and update gate u; will be multiplied together to update
the parameters to the memory cell.

¢ = tanh (We[as—_1,x¢] + be) (1)
u = o(Wylas—1, 2] + by) )
ft = o(Wyla—1, 2] + bs) 3)
o = o(Wylai—1,x¢] + by) (@)

Ct = Up * Cp + frxciq (®)]
a; = oy * tanh(cy) (6)

Operations of the forget gate f; is similar to those of the
update gate. The forget gate allows the model to choose when
to forget the information in memory cell, as shown in Equation
3. The forget gate f; has parameters which are the weight wy
and the bias by. The output gate o; is computed in Equation 4
by multiplying current input with weight w, and add bias b,,.
Using Equation 5 to update the parameters to cell state, a new
cell state ¢; is computed and transferred to the next layer by
multiplying the update gate with the candidate ¢, and adding
it to the forget gate that is multiplied with the previous cell
state c;_1. Finally, the model takes the result a; to send it to
the next layer to keep tracking the parameters using Equation
6.

Cross validation [19] is a widely used technique for eval-
vating training data in machine learning models. The benefit
of the cross validation can be explained as follows: the data
is used to train the model often fits the model well. However,

/
(
(
@

[ Evaluation Data Training Data set

Fig. 2. Cross validation.

when the model is presented with a new set of training
data that we did not see before or the data comes from a
different distribution, the model may end up with problem of
bias/variance; bias occurs when the function underfit the data,
whereas variance is when the function overfit the data. As an
example, when we get 10% error in a train set and 11% in a
validation set, we end up with high variance problem. Also, if
we get 15% error in a train set and 16% in a validation set, we
will get high bias problem. Usually, we should be somewhere
in between. To avoid this problem, we employed k-fold cross
validation [20], where the training data is split into k subsets
to train them individually. As shown in the Figure 2, in our
work, we set k=6 and run the model 6 times. Every time our
model runs, the model takes the blue section in Figure 2 as a
training dataset, as shown in algorithm 1 line from 4 to 6.

Algorithm 1 LSTM to predict AWS spot price
Input: x
Require: Select features
1: if z >= on — demand then
z =1
end if
R = subset(x)
R = array[Rl, Rg, ceey Rz]
for (1 in R) do
9= LSTM(i)
rmse = (§,y)
end for
error.result = avg(rmse)

R e A ol

._
e

IV. EVALUATION

In this work, we fetch 3 months (from Dec. 2017 to Feb.
2018) historical data of spot instance prices from Amazon Web
Server. The data contains price, timestamp, instance type, and
instance region; we collect this as a small database, for 10
regions. We use another dataset with much longer duration of
8 months (from Mar. to Sep. 2016). In both datasets, we get
an hourly price that can make an hourly forecast; and set our
target ¢ as next price, and select few features. We decided to
utilize 7 features as follows: mean, max, min, number of hours,
number of days, current price (z;) minus next price (z(;11)),
and normalize value. The seven features improve model skill
by learning how the price changes over time, we choose the
numbers of features randomly, and not high numbers because



we try to avoid expensive model.

on
%o
o8
006
oot
o0
o

15 hickden urits 1 layer Ahidden units 1 ayer 4 hidden urits 2 layers
Dropout(0.2)

15- hidden units dlayer - hidden units 4 layer

Number of Hidden units and layers
Fig. 3. Number of hidden units and layers.

We used 80% and 20% of the dataset for training and
testing, respectively. We set the price that is equal or over
an on-demand price to one. We split the training set into &
subsets. In this work, we set & = 6 and run LSTM model
individually to get output y. We then compute a root-mean-
square error (RMSE), with an actual price y to get an average
error for every availability zone, using Equation 7, where y is
an actual price and ¢ is a prediction value.

RMSE = +/(y —9)* )

We implemented the work using python 3.6.2 and Anaconda
open source distribution 4.4.7. To run the model, we used
Keras, which is a high-level neural networks API, running on
top of TensorFlow. We set our model parameters with four
hidden units and one layer which shows the smallest RMSE
in Figure 3, where we run our model to find the best number
of hidden units and layers. Figure 4 shows our model behavior
when we use a small value of iterations or higher, so we start
from 1 to 1000 iterations where the best value of iteration for
our model for the most of availability zones is between 9 and
14. For this reason, we set number of instance to 10. Figures

Fig. 4. Number of iterations.

5 and 6, we compare our model result with other time series
algorithms using the 3- and 8-month datasets, respectively.
Autoregressive, ARIMA and Moving Average performs better
than the conventional LSTM. However, LSTM with k-fold
cross validation shows the smallest RMSEs in both datasets.
We obtain the best results with 0.07 error for training set and

0.09 for test set error using the 3-month dataset, and 0.09
error for training set and 0.12 for test set error using 8-month
dataset. After our model is fitted to a training set, it would be

04

025
= Average of Test error E
= Average of Train crror 015
- II I I I I
o
AR

I1STMIK-fold MA

error
°
o

°
[

°

ARIMA 1sTM
models

Fig. 5.

Sos
:
04
03
0.2
" ml Bl =
0
LST™M MA AR

LSTM+Kfold

Average result for 3 months data set.

ARIMA
models

Wirain RMSE M test RVSE

Fig. 6. Average result for 8 months data set.

easy to forecast the next 24 hours, by using many approaches
to generate a test set. As an example, the training set can be
used to make the prediction for the next 24 hours, by setting
the last 24 hours price to forecast the next 24 hours, or it can
be generated by using random values from the training set.
In our experiment, we used the latter approach to forecast the
next 24 hours, by fitting our model to random set and get the
forecast.

V. ACPP APPLICATION

With our LSTM model, we try to find the most stable spot
instances in real time, whose prices are under the preset on-
demand price. This application is called as Amazon Cloud
Price Prediction (ACPP). The ACPP application works in real
time by importing Amazon spot instance prices daily. With
the data, the ACPP application runs our model to forecast the
next 24 hours, the first step prepare our data starting from
splitting data based on availability zones; then we normalize
the data based on on-demand price, then run our model. After
we get the predictions, we run a python code to gives users the
availability zones whose prices do not become over a preset
on-demand price and less changing over time, which helps the
users to choose the most stable availability zones. All results
for 20 availability zones can be accessed via http://167.99.77.9.
Figure 7 shows one of our result graphs, the graph has two
y-axes that represent actual prices and its converted values.



The actual spot prices (green line) and the preset on-demand
price (blue line) belong to the right axis which represents the
prices in US dollar. Similarly, the normalized value (purple
line) and predicted value (red line) belong to the left axis
which represents the values between 0 and 1.

eu-central-1a-g2-2xlarge

Price redictons

o~ normalize value

price -8 prediction value - on-demand price

ap-southeast-2b-g2-2xlarge

Price redictons

Fig. 7. Chart that show prediction with actual price.

Figure 8 shows the flowchart of ACPP application starting
from importing data from AWS server, cleaning the data,
applying k-fold cross validation, then running the LSTM
model. After we get the results, we find the most stable
availability zones.

< Row Datais
: colleeed

Clean Data

K-fold Cross
Validation

b

Find the most
stable AZs

=
=
=

Visualizations Run LSTM model

¢

Fig. 8. ACPP chart.

VI. CONCLUSION

We applied LSTM model with k-fold cross validation to
3 months of data from AWS for 10 regions (20 availability
zones) as a small data. We also used 8 months data separately.
We then use the RMSE to evaluate the performance. we find
the error is decreasing more with k-fold cross validation and
the result is obtained much faster. We applied our data to other
statistical mode to compare their performances. We found that
our model works more accurately. Also, we implement our
real-time application ACPP using our model to give users the
prediction value for the next 24 hours. Based on our result,
we try to find the availability zone whose price less becomes
over on-demand price and less changes over time.

VII. ACKNOWLEDGMENT

This work is supported by the ICT R&D program of IITP
(2017-0-00396) and the Scholarship Program of the Saudi
Government.

REFERENCES

[11 G. U. Yule, On The Time-Correlation Problem With Special Reference
To The Variate-Difference Correlation Method, Journal Of The Royal
Statistical Society, Vol.84, pp.497-537, July 1921.

[2] T. W. Anderson, C. Hsiao, Estimation of dynamic models with error
components. Journal of the American Statistical Association, Vol.76,
pp-589-606, Feb 1981.

[31 G. E. P Box, G. M. Jenkins, G. C. Reinsel, Time series analysis:

forecasting and control, 3rd. Ed, Englewood Cliffs, NJ: Prentice-Hall,

1994.

J. Faraway, C. Chatfield, Time series forecasting with neural networks:

a comparative. applied statistics, The Journal of the Royal Statistical

Society, applied statistics series C, Vol 47, pp.231250, Feb1998.

S. A. Alkharif, K. Lee, H. Kim, Time-series analysis for price prediction

of opportunistic cloud computing resources. In proceedings of the 7th

International Conference on Emerging Databases, Lecture Notes in

Electrical Engineering, Springer, Vol.461, pp.221-229, Busan, Korea, Aug

2017.

S. Warren, McCulloch, W. A. Pitts, logical calculus of the ideas immanent

in nervous activity. In proceedings of the bulletin of mathematical

biophysics, Vol.5, pp.115-133, Dec 1943.

[7]1 Rosenblatt, Cornell aeronautical laboratory, Inc. No. 85-460-1,Jan 1957.

[8] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves,

D. Silver, K. Kavukcuoglu, Decoupled neural interfaces using synthetic

gradients, arXiv:1608.05343v2, Jul 2017.

S. Makridakis, A. Andersen, R. Carbone, R. Fildes, M. Hibon, R.

Lewandowski, J. Newton, E. Parzen, R. Winkler, The accuracy of extrapo-

lation (time series) methods: results of a forecasting competition. journal

of forecasting, Vol.1, pp.111-153, Apr/Jun 1982.

[10] N. Laptev, J. Yosinski, E. Li.L, S. Smyl, Time-series extreme event
forecasting with neural networks at uber. In proceedings of the IEEE
International conference on data mining workshops, pp.18-21, New
Orleans, LA, USA, Jun 2017.

[11] S. Ravuri, A. Stolcke, Recurrent neural network and Istm models for
lexical utterance classification. In proceedings of the ISCA - International
speech communication association, proc, interspeech, pp.135-139, Sep
2015.

[12] R. Kohavi, A study of cross-validation and bootstrap for accuracy
estimation and model selection. In proceedings of the 14th international
Jjoint conference on Artificial intelligence, Vol 2, pp.1137-1143, San
Francisco, Aug 1995.

[13] K. Bandara, C. Bergmeir, S. Smyl, Forecasting across time series
databases using long short-term memory networks on groups of similar
series, arXiv:1710.03222v1, 2017.

[14] A. Thakur, S. Kumar, A. Tiwari, Hybrid model of gas price prediction
using moving average and neural network. In proceedings of the Ist
International Conference on Next Generation Computing Technologies,
pp.735-737, Dehradun, India, Sep 2015.

[15] E. Coutinho, F. Weninger, B. Schuller, K. R. Scherer, The munich
LSTM-RNN approach to the mediaeval, ”Emotion in Music” Task. In:
UNSPECIFIED, Oct 2014.

[16] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations
by back-propagating errors, Neurocomputing: foundations of research,
pp.696-699, Cambridge, MA, USA, 1986.

[17] K. Cho, B. V. Merrienboer, D. Bahdanau, Y. Bengio, On the prop-
erties of neural machine translation: Encoder-decoder approaches,
arXiv:1409.1259v2, Association for Computational Linguistics, pp.103-
111, Doha, Qatar, Oct 2014.

[18] J. Chung, C. Gulcehre, K. H. Cho, Y. Bengio, Empirical eval-
uation of gated recurrent neural networks on sequence model-
ing, arXiv:1412.3555v1, presented at the deep learning workshop at
NIPS2014, 2014.

[19] M. Stone, Cross-validatory choice and assessment of statistical predic-
tions, Journal of the Royal Statistical Society B, Vol 63, pp.111-147, 1974.

[20] S. Larson, The shrinkage of the coefficient of multiple correlation,
Journal of Educational Psychology Vol 22, pp. 4555,1931.

[4

—

[5

—_

[6

—

[9

—



