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Abstract—Training a Convolutional Neural Network (CNN)
model typically requires significant computing power, and cloud
computing resources are widely used as a training environment.
However, it is difficult for CNN algorithm developers to keep
up with system updates and apply them to their training
environment due to quickly evolving cloud services. Thus, it is
important for cloud computing service vendors to design and
deliver an optimal training environment for various training tasks
to lessen system operation management overhead of algorithm
developers. To achieve the goal, we propose PROFET, which can
predict the training latency of arbitrary CNN implementation
on various Graphical Processing Unit (GPU) devices to develop
a cost-effective and time-efficient training cloud environment.
Different from the previous training latency prediction work,
PROFET does not rely on the implementation details of the
CNN architecture, and it is suitable for use in a public cloud
environment. Thorough evaluations reveal the superior prediction
accuracy of PROFET compared to the state-of-the-art related
work, and the demonstration service presents the practicality of
the proposed system.

Index Terms—CNN, training, latency, prediction, GPU, cloud

I. Introduction
Deep Neural Network (DNN) has paved the way for the

application of artificial intelligence algorithms in many fields,
including image recognition and natural language processing.
The success of deep learning is due to the advancement
in DNN algorithms [1], programming interfaces and plat-
forms [2]–[4], and optimized hardware for deep learning, such
as the GPU and Tensor Processing Unit (TPU) [5].

Among many DNN algorithms, Convolutional Neural Net-
work (CNN) [6]–[8] is widely used for various applications,
such as object detection for self-driving cars and image
recognition. The complex internal structure of CNN imple-
mentations requires massive computing power and parallelism,
particularly during the training step. Depending on the model
complexity, training a CNN model can take a few weeks
or months [9], [10], and building a cost-efficient and fast
processing environment is crucial to increase the productivity
of CNN algorithm developers. In addition, GPU devices can
provide massive parallelism, but building a GPU cluster can be
prohibitively expensive. Users can easily build a CNN model
without purchasing GPU devices by using cloud resources.
Training jobs may occur on occasion, and using GPU instances
only when needed can result in cost savings.

The pace of cloud computing innovation is very fast, with
new types of cloud services and instances being released on a
regular basis by public vendors. It is difficult for deep learning

algorithm developers to keep up with updates from public
cloud vendors and understand the impact of the updates in
order to apply them to their deep learning training pipeline.
As a result, it is ideal if cloud service vendors provide an op-
timized deep learning environment natively so that algorithm
developers can focus on core application development.

The Platform-as-a-Service (PaaS) cloud service model pro-
moted as reducing development platform management over-
head, allowing programmers to focus on critical software
development tasks. Current deep learning pipeline platform
services provided by public cloud vendors, such as AWS
SageMaker and Google Cloud Datalab, are far from optimal
because users must manually select cloud instance types and
the number of instances to train a DNN model. Furthermore,
an optimal DNN environment can vary across model archi-
tectures, dataset sizes, and model configurations, making deep
learning platform management more difficult.

To understand the performance characteristics of the various
CNN algorithm training latency on different public cloud
GPU instances, we measured the training time on AWS EC2
instances that are equipped with GPU devices (Table I), and
the result is presented in Figure 1. Different CNN model
architectures could result in a five-fold performance difference
between the best and worst-performing GPU instance types.
Despite such stark performance differences when training a
CNN model on GPU cloud instances, algorithm developers
rarely understand such performance characteristics and miss
opportunities to optimize training environments. In addition,
imposing training environment operation burdens on DNN
algorithm developers might be too much overhead for them, as
they are not generally system experts. Thus, the cloud service
vendor should prepare an optimal training environment that
reflects algorithm developers’ implementation characteristics.

Habitat [11], Paleo [12], NeuralPower [13], and MLPre-
dict [14] proposed algorithms to predict the training time
for various CNN algorithms on different GPU devices. The
systems use the internal architecture of a CNN implementation
and GPU device characteristics as input features. We call such
approaches white-box methods. Though they envisioned the
feasibility of predicting the training time of CNN implemen-
tations on arbitrary GPU devices, the white-box approach can
be challenging to apply in an environment where a deep learn-
ing algorithm developer and a DNN development platform
provider, such as a public cloud vendor, are not identical. In
public cloud services, to provide an optimal DNN training



AWS GPU Instance Specification
Instance Family G3s G4(dn) P2 P3

GPU Model M60 T4 K80 V100
GPU Core 2048 2560 2496 5120

GPU Clock(MHz) 1178 1590 875 1380
TFLOPS(FP32) 4.825 8.141 4.113 14.13
Released Year 2017 2019 2016 2017

Price($/hr) 0.75 0.526 0.9 3.06

TABLE I: Specification of different GPU Instances on AWS

environment using a white-box approach, a service provider
should know details of the model architecture. However, it is
unlikely that algorithm developers would be willing to share
the source code, which is generally confidential and is a private
asset of an organization.

To overcome the shortcomings of the previous works, we
propose PROFET, which aims to predict the training time for
arbitrary CNN implementations without revealing the internal
model architecture. Hiding the model architecture in a training
latency prediction model makes the proposed system appro-
priate for a public cloud system where algorithm developers
and development platform maintainers are different. To meet
the goal, PROFET uses abstracted profiling information from
CNN training as prediction model input and proposes novel
heuristics of median-ensemble modeling to enhance prediction
accuracy. PROFET can predict the CNN model training time
on diverse GPU devices to support CNN training scenarios on
the cloud GPU instances. A thorough evaluation of PROFET
reveals that it outperforms the state-of-the-art algorithms,
Habitat [11], Paleo [12], and MLPredict [14], improving
prediction accuracy by 32%, 68%, and 82%, respectively.

In summary, the major contributions are as follows.
• Envisioning the importance of black-box performance

estimation of the CNN on a public cloud
• Unique median-ensemble modeling to predict training

latency across distinct GPU devices
• Publicly available artifacts and a web service to enhance

the development of a deep learning system1

II. Training CNN on Cloud
Training a model can take weeks or months, depending on the

internal architecture of the CNN implementation [10], [15], [16].
Various configurations influence CNN model training time, and
it is critical to understand the performance diversity of CNN
training to build an optimal training environment.

A. Overview of CNN
CNN algorithms are commonly used to analyze visual

representations from a given input dataset, which typically
consists of images or videos. The most common type of CNN
model is built with input and output layers connected by a
series of hidden layers. Each hidden layer includes a wide range
of operations, such as convolution, activation, and pooling.
The operations extract information from the previous layer

1PROFET Service and Artifacts: http://profet.ddps.cloud
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Fig. 1: Performance variation of CNN model training using GPU
cloud instances

and abstract it by applying a specific operation to pass it
to the next layer. In the early days of CNN implementation,
small models were proposed, such as LeNet5 [6]. Recently,
diverse and complex models regarding depths, layers, activation
functions are proposed which improve the model accuracy
drastically. They include AlexNet [8], VGG [7], ResNet [17],
and Inception [18].

B. GPU Instances on Cloud
As CNN model training task requires extensive computing ca-

pacity, GPU is widely used to train a model because of its superb
performance and well-established Software Development Kit
(SDK). Due to its high cost of hardware and cluster management
overhead, using GPU devices through public cloud services
becomes the norm, and most public cloud vendors provide the
service. Similar to other cloud instances, there exist various
instance types which equip GPU devices. Table I shows GPU-
based instance types provided by AWS. We show the smallest
size in each instance family. As shown in the table, each instance
type has its own GPU model manufactured by NVIDIA. CNN
training performance is expected to be primarily determined
by the processing capacity of GPU, which can be expressed in
terms of the number of GPU cores, clock speed, and floating-
point operations per second (FLOPS). Other than the distinct
processing capacity of each instance type, the price also differs
significantly, and it becomes challenging for CNN algorithm
developers to decide optimal GPU cloud instances for their
model development.

C. Understanding CNN Training Performance
The diversity of CNN model, configurations, and cloud

instances can result in significant differences in model training
time. To represent latency and cost difference under various
settings, we conducted thorough experiments. Figure 1 presents
the mini-batch training time of LeNet5 [6] and AlexNet [8] on
various GPU cloud instances presented in Table I. The latencies
are represented with bars in the primary vertical axis. The
secondary vertical axis displays the relative cost of completing
a given training workload, with the values represented by star
marks. They are normalized to the least value in each workload.

http://profet.ddps.cloud


For each workload, the cloud instances are shown in the order
of g3s, g4dn, p2, and p3. For LeNet5, the g4dn is the fastest,
while the p3 is the fastest for AlexNet training. Comparing the
best and worst-performing instance types, the latency of LeNet5
is less than two times (g4dn and p2), but that of AlexNet is close
to ten times (p3 and p2). Regarding the cost, g4dn incurs the
least cost for both workloads, but choosing p3 instance can be
more beneficial for AlexNet because its training latency is about
one-third with only twice more cost than g4dn.

Figure 1 presents drastic CNN training latency variations
on diverse cloud instances with GPU devices under different
model architectures. Considering the continuous release of new
cloud services, resources, and pricing mechanisms [19]–[21],
it is challenging for CNN algorithm developers to follow new
updates and timely apply them to their training environment.
Furthermore, it is very cumbersome to try every instance type
that might need custom device library setup to check how
a CNN model performs. Therefore, a guidance of estimated
performance of custom CNN algorithm implementations on
diverse cloud instance types is mandatory to help developers
to build an optimal training environment and focus on core
application development.

III. PROFET : Modeling Training Time
The goal of PROFET is to predict the training time for

arbitrary CNN implementations on various GPU instances
provided by a public cloud service vendor with minimal
exposure to implementation details. Minimally exposing the
implementation details is important, especially in a public cloud
environment. Setting up a CNN development environment using
GPUs requires considerable system operation effort, which can
be quite challenging for an algorithm developer. Thus, the
responsibility of maintaining and operating an optimal devel-
opment environment should be imposed on the cloud service
vendor, which agrees with the recent cloud computing evolution
direction [22] represented by the serverless computing [23],
[24]. To allow public cloud vendors to provide an optimal
training environment for arbitrary CNN implementations, CNN
model characteristics should be provided while hiding the
detailed internal architecture, and PROFET achieves this goal
using abstracted operation information.

To build a prediction model, a set of feature vectors which
we denote as 𝑿 is generated from offline experiments. 𝑿 is
composed of 𝑁 workloads. Each workload return a feature vector
with a dimension of 𝐷. Thus, the dimension of 𝑿 is 𝑁 × 𝐷. We
denote each workload scenario as 𝒙𝑖 , 𝑖 = 1 : 𝑁 . To note 𝑗-th
feature of workload 𝑖, where 𝑖 = 1 : 𝑁, 𝑗 = 1 : 𝐷, we use 𝑥𝑖 𝑗 .

To generate diverse CNN workloads, we variate CNN train-
ing scenarios with respect to the instance types (𝐺), model
architectures (𝑀), batch sizes (𝐵), and input image pixel sizes
(𝑃). For 𝐺, we assume GPU cloud instances provided by
AWS, 𝐺 ∋ {𝑔3𝑠, 𝑔4𝑑𝑛, 𝑝2, 𝑝3}. For models, 𝑀 , we used
well-known CNN models in literature, 𝑀 ∋ {AlexNet, LeNet5,
InceptionV3, InceptionResNetV2, MobileNetV2, MNIST CNN,
CIFAR10 CNN, ResNetSmall, ResNet18, ResNet34, ResNet50,
VGG11, VGG13, VGG16, VGG19}. We used five batch sizes,

Operation Operation Details Aggregated 
Time (ms)Layer Name
 Output Tensor MEM Request Time (ms)


Conv2D

conv2d_0
 [32, 96, 224, 224] 616562 KB 50

286conv2d_1
 [32, 256, 112, 112]
 411041 KB 45
conv2d_2 [32, 512, 58, 58] 220463 KB 39

… … … …

ReLU

activation_0
 -
 - 11

26activation_1 - - 7
activation_2 - - 3

… … … …

MaxPool

max_pooling2d_0 [32, 96, 112, 112] 154140 KB 6

14max_pooling2d_1 [32, 256, 56, 56] 102760 KB 4
max_pooling2d_2
 [32, 512, 29, 29] 100663 KB 2

… … … …
and more operations ( Conv2DBackpropFilter / MatMul / Softmax … )

PROFET uses only (Operation, Aggregated Time)

Fig. 2: An example of profiling data generated from AlextNet
model training using TensorFlow profiler

𝐵 ∋ {16, 32, 64, 128, 256}, and five input image pixel sizes,
𝑃 ∋ {32 × 32, 64 × 64, 128 × 128, 224 × 224, 256 × 256}. To
generate images with different pixel sizes, we used the Numpy
library. All workload scenarios can be generated by conducting
Cartesian product in the four dimensions (𝐺 × 𝑀 × 𝐵 × 𝑃 =

{(𝑔, 𝑚, 𝑏, 𝑝) : 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀, 𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃}). All cases of
𝐺 × 𝑀 × 𝐵 × 𝑃 cannot be completed due to hardware or model
constraints. Filtering out inexecutable cases, we finalize 1228
cases which becomes the cardinality of input dataset, which is
𝑁 . Each workload 𝒙𝒊 is a vector with a length 𝐷 that is returned
by the underlying profiler. Among the operations provided by
TensorFlow Profiler [25], we generate 65 aggregated high-
level operations from 1228 executable workloads. Thus, the
dimension of 𝑿 is 1228 × 65.

A. Extracting CNN Characteristics on Cloud
A PaaS cloud model frees CNN algorithm developers

from operating cloud infrastructures and DNN development
platforms because a cloud service provider is responsible for
maintaining them. To provide efficient deep learning platforms,
cloud vendors should understand distinct workload character-
istics submitted by clients. However, in a PaaS model, most
CNN algorithm developers are not willing to share source codes
or internal architectures of a developed model. Thus, previous
works which reference internal model architectures to predict
DNN training latency [12]–[14] cannot be applied directly on a
PaaS environment. To predict training latency of arbitrary CNN
implementations on a public PaaS model, PROFET should be
able to characterize a workload while minimally disclosing the
internal model architecture.

Other than referencing source code to characterize CNN
workloads, PROFET proposes to use performance metrics
generated during a training phase provided by a profiler of DNN
programming platforms, such as TensorFlow [3], MXNet [26],
Torch [2], and Theano [4]. Though information from metrics of
each platform differs slightly, they provide response times for
core DNN-specific operations in common.

To better understand performance metrics provided by a
DNN development platform, we show an example of a CNN
model profiling outcome generated by TensorFlow Profiler [25]
in Figure 2. A profiling output contains Operation, Operation



detail, and Latency fields. The operation field indicates a method
name used in a source code which is specified by a development
platform. The operation details field contains rich information
of a CNN model which includes method name and its layer
location, input and output tensor sizes, memory usage, and
many more. The information contains internal architecture of
custom implementation, and a model can be assembled using
the information. Of the profiling outcome, PROFET proposes to
use the operation field and the corresponding aggregated time
field as features to represent CNN workloads and make a model
to predict training time of arbitrary CNN implementations.
With the high level information about operations, Hafeez et. al.
proved that profiled outcome can well represent characteristics
of arbitrary CNN models [27]. Furthermore, hiding operation
details can relieve CNN algorithm developers when they share
the workload characters with public cloud PaaS vendors which
can offer an optimal development environment for any kinds
of CNN workloads. In summary, PROFET adopts a black-box
approach by using high-level expression of CNN workloads
without using internal model architectures which is contrary
to the white-box approach adopted in previous work [12]–[14],
and such black-box design fits very well with the public cloud
environment where the service providers and consumers differ.

Using the operation names and aggregated latencies as
features constructs input vectors, 𝑿, and we define output
vectors, 𝒀 , as a corresponding batch latencies of the input
vectors. Formally speaking, for an arbitrary CNN workload
profiling features, 𝑥𝑖 , 𝑦𝑖 is a scalar value which represents a
measured batch latency of workload 𝑖 where 𝑖 = 1 : 𝑁 . To
note a value of specific feature, 𝑗 , of model 𝑖, we use 𝑥𝑖 𝑗 ,
where 𝑖 = 1 : 𝑁, 𝑗 = 1 : 𝐷, which is a scalar value. Creating
feature vectors, 𝑿, from a deep learning platform incur non-
negligible extra overhead that can impact batch latency, 𝒀 . In
our off-line experiments, about 20%−30% larger batch latency is
measured when we enabled profiling. To remove the impact from
the profiling overhead, we conducted two sets of experiments
with a workload, 𝑖, one with profiling enabled, another without
profiling enabled. In the experiments with profiling, we gather
𝑿. To get an accurate value of 𝒀 , we measured the batch
latency without enabling profiling. This procedure of separately
generating 𝑿 and 𝒀 is identical when a new CNN workload
scenario is predicted with PROFET; an user enables profiling
to get a feature vector to get predicted batch training latency
without profiling enabled.

B. Modeling CNN Performance on Cloud
PROFET predicts the training latency of arbitrary CNN

implementations (𝑀) on different GPU-based instance types
(𝐺), batch sizes (𝐵), and input image pixel sizes (𝑃). To
formally express input datasets, 𝑥𝑖 , in a finer-grained way,
we use the lowercase letter of each category as a subscript,
𝑥𝑚𝑔𝑏𝑝 = {(𝑚, 𝑔, 𝑏, 𝑝) : 𝑚 ∈ 𝑀, 𝑔 ∈ 𝐺, 𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃}. For
example, to specify input datasets of an arbitrary model (𝑚),
batch size (𝑏), and input pixel size (𝑝) for all the possible GPU
instances in𝐺, we use 𝑥𝑚𝑏𝑝 which excludes 𝑔 from the subscript,
and the cardinality of 𝑥𝑚𝑏𝑝 equals the size of |𝐺 |, which means

four instance types with GPU devices used in this proposed
work. The prediction model of PROFET is composed of two
phases, cross-instance performance prediction and batch/input
image pixel size prediction.

The cross-instance performance model predicts the training
latency of an arbitrary workload of 𝑥𝑚𝑏𝑝 on various instance
types. This model requires a profiled feature set of a workload,
𝑥𝑚𝑏𝑝 , on an instance type which we call an anchor instance,
𝑔𝑎. Using the profiling outcome from 𝑔𝑎, PROFET predicts the
training latency on a target instance type, 𝑔𝑡 where 𝑔𝑎 ≠ 𝑔𝑡 and
𝑔𝑎, 𝑔𝑡 ∈ 𝐺, of workload 𝑥𝑚𝑏𝑝 . Let us define a training latency
prediction model from 𝑔𝑎 to 𝑔𝑡 , as 𝑓𝑔𝑎→𝑔𝑡 . The training dataset
of the function is defined as D𝑔𝑎→𝑔𝑡 which is defined as follows.

D𝑔𝑎→𝑔𝑡 ≜ {(𝑥𝑚𝑏𝑝 |𝐺=𝑔𝑎 , 𝑦𝑚𝑏𝑝 |𝐺=𝑔𝑡 ) |𝑚𝑏𝑝 ∈ (𝑀 ∪ 𝐵 ∪ 𝑃)}

For an arbitrary workload of 𝑚𝑏𝑝, an input feature vector 𝑥 is
returned from a profiler after executing on an anchor instance,
𝑔𝑎. The output of the model, 𝑦, is a scalar value that is a
batch latency for the same workload, 𝑚𝑏𝑝, executed on a target
instance, 𝑔𝑡 .

With training dataset, D𝑔𝑎→𝑔𝑡 , PROFET builds a prediction
model using an ensemble algorithm [28] with a median oper-
ator [29]. In machine learning, ensemble modeling combines
multiple individual weak models to have higher prediction
accuracy. The bootstrap aggregating (bagging) [28] trains
multiple models using the same set of train dataset and allocate
weights for each model to come up with the final prediction.
Lang et. al. [29] proposed a median-based bagging algorithm
that adopts the median predicted values among multiple pre-
dictive values. According to the authors, using the median
value improves model accuracy by removing noise in real-
world signal processing applications. For ensembling, PROFET
builds three independent prediction models of a DNN, random
forest [30], and linear regressor. We build a DNN model of
128 × 64 × 32 × 16 × 1 dense layer architecture with ReLU
activation [31] in each layer while minimizing the combined
loss of Mean Absolute Percentage Error (MAPE) and Root Mean
Squared Error (RMSE) with the Adam optimizer [32]. To build
random forest and linear regression models, we use Python’s
Scikit-Learn library [33] with the default hyper-parameters
provided by the library.

Figure 3 explains the overall procedure of cross-instance
batch latency prediction. The left side of the figure(phase 1)
expresses the generation of the training dataset. In the step, all
the workloads are executed on all the GPU instance types in
𝐺, and profiling features with the corresponding batch latencies
are recorded. To use the experimental result as a model training
input, we match the profiled feature (𝑥𝑚𝑏𝑝) of an anchor instance
(𝑥𝑔) and batch latencies (𝑦𝑚𝑏𝑝) of target instances (𝑥𝑡 ). In the
figure, the anchor instance type is g3s, and the target instance
types are g4, p2, p3. It shows three training input cases; for a
same profiled feature from g3, three batch latencies from g4, p2,
p3 are matched as outputs. In the prediction model building step,
separate models are trained per each anchor and target instance
type combination using distinct training dataset of D𝑔𝑎→𝑔𝑡 .



Workload-Instance Dataset

 Workload Anchor

Instance

Profiled

Features

Batch

Latency

VGG16-32-224x224 g3s 3 … 1 10

VGG16-32-224x224 g4 4 … 5 20

VGG16-32-224x224 p2 5 … 10 30

VGG16-32-224x224 p3 2 … 1 5

… … … … … …
ResNet50-32-224x224 p2 18 … 50 150

ResNet50-32-224x224 p3 8 … 20 80

Train Dataset for Anchor Instance of g3s

Phase 1. Build Anchor Dataset

Dataset 
Transformation 
for Training

(M − B − P)  Workload 

VGG16-32-224x224 g3s

VGG16-32-224x224 g3s

VGG16-32-224x224 g3s

… …

ResNet50-32-224x224 g3s

ResNet50-32-224x224 g3s

ResNet50-32-224x224 g3s

3 … 1

3 … 1

3 … 1

… … …
5 … 30

5 … 30

5 … 30

g4 20

p2 30

p3 5

… …
g4 70

p2 150

p3 80

ga gtxmbp ymbp(M − B − P)

Phase 2. Train Anchor Prediction Model

Dg3s→g4

Random 
Forest

Deep 
Neural 
Network

Median Bagging Ensemble

Simple 
Linear 
Regressor

Prediction Result

Random 
Forest

Deep 
Neural 
Network

Median Bagging Ensemble

Simple 
Linear 
Regressor

Prediction Result

Dg3s→p2

Dg3s→p3

Random 
Forest

Deep 
Neural 
Network

Median Bagging Ensemble

Simple 
Linear 
Regressor

Prediction Result

Fig. 3: Predicting the training latency on a target instance type based on profiled feature from an anchor instance

Using the unique dataset per anchor and target instance types,
three models of linear regressor, random forest, DNN are trained
for median-ensemble modeling. In the figure, three separate
ensemble models are built, 𝑓𝑔3𝑠→𝑔4, 𝑓𝑔3𝑠→𝑝2, and 𝑓𝑔3𝑠→𝑝3.

1) Predicting Latency on New GPU Types: A new type of
GPU is released quite often, and it is important to anticipate
training latency on such new hardware which was not available
during the prediction modeling. PROFET does not use hardware
specifications as prediction model features as previous work
did [11], [12], [14], and it cannot predict training latency for a
new GPU device which was not available at a modeling phase.
However, this does not become a significant issue when the
prediction service is provided by a cloud vendor. In the cloud,
service providers decide when to make a new instance type
available to customers, and they have enough time to prepare
a latency prediction model for the new hardware. As cloud
computing becomes more prevalent for diverse applications,
cloud vendors should become more responsible for dealing with
complex system operations. From this context, preparation of
prediction model by a cloud service vendor for a new hardware
type is rational.

IV. Evaluation
To evaluate the accuracy of PROFET, we mainly use MAPE,

RMSE, and coefficient of determination which is denoted as 𝑅2.
The 𝑅2 metric represents a quantitative measurement of how the
predicted outcome from a regressor model resembles the true
value, and the higher 𝑅2 means better accuracy.

The experiments are conducted on AWS GPU instances with
various CNN models, batch sizes, and input image pixel sizes,
which are defined in Section III. In running CNN training on
AWS, we used Deep Learning AMI (Ubuntu 18.04) Version
35.0 which contains NVIDIA GPU driver (450.80.02), CUDA
SDK (10.1), and TensorFlow (2.3.0). According to the different
evaluation criteria, models and batch sizes which are to be
predicted are completely removed from the training datasets.

A. Performance of Cross-Instance Latency Prediction
Figure 4 presents the prediction accuracy of cross-instance

performance modeling presented in Chapter III-B. Each sub-
figure represent different anchor instance; Figures 4a, 4b, 4c, 4d
represents the anchor instances (𝑔𝑎) of g3s.xlarge, g4dn.xalrge,
p2.xlarge, and p3.2xlarge, respectively. The horizontal axis in

the figure represents the true training latency, while the vertical
axis represents the predicted latency by PROFET. A scatter plot
is used to express the real and predicted values, and a value
close to an equation 𝑦 = 𝑥 indicates an accurate prediction. As
shown in the figure, the predicted values are close to the real
CNN training time which presents superb prediction accuracy
of PROFET.

To quantitatively evaluate the prediction accuracy of the
median ensemble modeling of PROFET, we compare the
MAPE, and RMSE with other approaches in Figure 5. The
primary vertical axis represents the MAPE whose values are
shown in solid gray bars. The secondary vertical axis shows the
RMSE whose values are shown in the bars with the right upper
diagonal pattern. For both MAPE and RMSE, lower values are
better. In the horizontal axis, we show distinct prediction models
of a linear regressor (Linear), a tree-based non-linear regressor
(RandomForest), DNN, and the proposed ensemble algorithm
(PROFET). In the Linear approach, different from others, we use
batch latency measured from the anchor instance as input data.
The linear prediction model is an order-1 regressor which can be
expressed as 𝛼𝑥 + 𝛽, where 𝛼 means coefficient of batch latency,
and 𝛽 means a bias value of the model. Details of RandomForest
and DNN implementations are presented in Section III-B. Using
the three different models, the median ensemble approach of
PROFET takes the three predicted values and determines the
median value as the predicted latency.

As shown in the figure, PROFET shows the lowest error in
MAPE which is a 12.8%. Comparing to the MAPE of DNN,
the lowest MAPE among single models, the PROFET shows a
2.4% improvement. But in the case of RMSE, PROFET shows a
24.56% better prediction result than a single DNN model. Using
three distinct models with different complexity in an ensemble
manner compensates for the weakness of each model, and it
greatly improves the generality of the prediction model. For
instance, the MAPE and RMSE of Linear model show drastic
difference. Careful investigation reveals that the Linear model
shows poor prediction accuracy for small models which can
make MAPE worse even for small error values.

B. Comparison to the State-of-the-Art
Most contemporary CNN model training latency prediction

algorithms adopt the white-box approach while referencing
the internal model architecture and hardware configurations as
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Fig. 4: True (x-axis) and predicted (y-axis) latencies for different anchor instances
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Fig. 5: Higher prediction accuracy of the proposed median
ensemble approach of PROFET

PALEO PROFET
MAPE 10.11 3.25
𝑅2 0.99 0.99

RMSE 32.36 17.55

TABLE II: The prediction accuracy of Paleo and PROFET

features. We qualitatively argue that the black-box approach of
the PROFET is more appropriate in a public cloud environment.
To quantitatively present the prediction accuracy of PROFET
with the most recent related work, we compare its performance
with Paleo [12], MLPredict [14], and Habitat [11].

First, reproducing the Paleo experiment result necessitates the
creation of a training environment that is identical to the one used
by the Paleo authors. We discovered that building an identical
environment is impractical due to incompatible TensorFlow,
GPU driver and library versions. Applying Paleo’s prediction
algorithm on a contemporary development environment does
not result in the as accurate result as one presented in the
original paper, and we decided to compare the result presented
in the original publication [12]. Table II compare the prediction
accuracy of PROFET and Paleo for common models which are
AlexNet [8] and VGG-16 [7]. As shown in the table, PROFET
outperforms Paleo. For MAPE, PROFET is 67.85% better and
45.78% better for RMSE.

MLPredict [14] presented an algorithm to predict training
time of DNN models across different GPU devices for diverse
batch sizes and showed better performance. To compare the pre-

diction accuracy of PROFET with MLPredict, we implemeted
the MLPredict algorithm following the paper. Table III shows
the MAPE and RMSE of MLPredict and PROFET with different
batch sizes with VGG16 which showed the best performance
in [14]. As shown in the table III, the prediction accuracy of
PROFET outperforms MLPredict for both MAPE and RMSE.
We could observe that the accuracy of MLPredict is poorer than
the result presented in the paper [14]. In the original MLPredict
paper, the authors mainly predicted training latency of small
batch sizes, in the range of 1 to 16. The error rate of MLPredict
increases as the batch size becomes larger, and we could
conclude the MLPredict algorithm is rather optimized for small
batch sizes. However, such small batch sizes are impractical in
real-world model training because they increase training time.
Recent GPUs available device memory can accommodate larger
batch sizes for many well-known DNN implementations, and
we believe it is more important to accurately predict the training
time of larger batch sizes. In summary, PROFET improves the
RMSE by 81.54% comparing to MLPredict.

Last, we compare PROFET with the most recent related work,
Habitat [11], which uses detailed profiling results to build a
model and predict the training latency across different GPUs.
Habitat does not support prediction for varying batch sizes, and
we measured the prediction accuracy with fixed batch sizes of
16, 32, and 64 both for PROFET and Habitat. Habitat’s system
implementation is open-sourced, and we could reproduce the
experimental results in the publication. Table IV presents the
prediction accuracy of PROFET and Habitat. For both systems,
we use two GPUs of Nvidia T4 and V100. The row with T4
→ V100 indicates that the anchor instance is T4, and the target
instance to predict the training latency is V100. For different
anchors and target GPUs, we predict the training latency of
Resnet50, InceptionV3, and VGG16 models and present the
average MAPE. We select the GPU device and CNN models
that are common to the PROFET and Habitat experiments.
On average MAPE, PROFET shows 32.26% lower than that
of Habitat.

In summary, PROFET presents the best prediction accuracy
among contemporary related work by lowering the MAPE by
32% (Habitat), 68% (Paleo), and 82% (MLPredict). We claim



MAPE (%) RMSE
BS MLPredict PROFET MLPredict PROFET
16 15.68 2.96 90.82 8.78
32 17.89 3.25 135.63 17.55
64 24.27 4.45 408.81 70.51

TABLE III: The prediction accuracy of VGG16 model for
diverse GPU instances of MLPredict and PROFET

Habitat PROFET
T4 → V100 12.16 4.07
V100 → T4 7.99 8.15

TABLE IV: The prediction accuracy (MAPE) of Habitat and
PROFET with different combination of anchor-target GPUs

that the higher prediction accuracy of PROFET while using less
detailed information than the white-box approach is due to the
creative definition of input features from the anchor instance
and target latency from the instance type that PROFET needs to
predict. Feature clustering also helps to improve the prediction
model’s generality.

V. Related Work
Performance Modeling on Various Hardware: Paleo [12],

MLPredict [14] and NeuralPower [13] proposed performance
model for DNN training job. To accurately predict the training
time or power usage, they use the internal model architecture and
GPU specification as input feature of prediction model. Most
recent work, Habitat [11] uses a profiling result as PROFET
does. However, Habitat uses detailed profiling output which
might be inappropriate in a public cloud environment. The
aforementioned works refer to the internal architecture of target
models (white-box), and algorithm developers may be hesitant
to share the architecture.

Using Profiler for DNN Performance Analysis: TBD [34]
and Yeung et al. [35] examined the profiling results of various
DNN models, hardware, and frameworks and presented an
analysis of processing throughput, utilization, and memory
consumption of each workload. PerfNetV2 [36] and Ceer [27]
uses TensorFlow profiler to collect detailed DNN operation data
to build a performance model, and it is similar to PROFET. But
it is hard to compare performance with Ceer due to the lack of
publicly available artifacts.

DNN System with Performance Modeling: Optimus [37],
Cynthia [38], RubberBand [39], and Chaudhary et. al. [40]
proposed a DNN tuning and training system that maximizes
DNN cluster utilization to reduce processing time. They use
the performance model to allocate DNN workload efficiently,
or reduce the scale of the GPU cluster. Accurate performance
estimation is critical for completing the aforementioned work,
and PROFET is complementary to the work in that it can provide
the accurate training time of various CNN implemetations.

VI. Discussions
Modeling train latency on diverse development platform:

During PROFET evaluation, we discovered that applying previ-
ous work algorithms on the most recent development platforms

did not reproduce the prediction accuracy shown in the original
papers, so we had to create a development environment using
specific older versions. Most of previous work mentioned the
version of development platforms for their evaluations, such
as TensorFlow, Keras, GPU driver, and CUDA SDK, but we
suffered from replaying the environments. We anticipate a
similar situation for PROFET. There is not yet a system that
can model the training latency as developers update underlying
SDK libraries. Though it can be challenging, we believe that
modeling performance with respect to a different SDK version
can be useful, particularly for algorithm developers who need to
decide whether an SDK version upgrade is worth the effort.

Training latency prediction when using multiple GPU
devices: A large portion of DNN training tasks is conducted
with single GPU. According to Microsoft Philly trace [16]
and SenseTime trace [15], 86% and 70% of DNN tasks are
conducted on a single GPU, respectively. Though the majority of
DNN training tasks are executed on a single GPU, using multiple
GPUs can be an option to expedite a training task. In literature,
many work discussed predicting the performance of parallel
DNN training from a single GPU execution result [27], [41].
Marble [42] and Kahira et. al. [43] proposed optimal scheduling
algorithms for parallel DNN executions. The work revealed that
the bandwidth of CPU-GPU and GPU-GPU is an important
metric for parallel training performance, and we are sure that
applying communication overhead to PROFET will result in
accurate prediction for training with multiple GPUs.

Training latency prediction for non-CNN models : The
current PROFET supports training latency prediction of CNN
models. Different types of DNN models, such as language
processing models of Transformer [44] and BERT [45], use
different operations, and the latency prediction models built
with CNN profiling results can not apply to non-CNN models
directly. We are currently working on extending PROFET to
support general DNN models.

VII. Conclusion

Training a CNN model with a GPU device has become
the norm because it requires significant computing power, and
public cloud service vendors offer a variety of GPU devices
elastically. Due to the dynamically changing performance of
arbitrary CNN implementations on various GPU devices, it
is difficult for an algorithm developer to create an optimal
training environment. This paper presented PROFET, which can
predict the training latency of arbitrary CNN implementations
with diverse configurations on various GPU devices, to aid
in the development of an efficient CNN training environment.
Without revealing implementation details of CNN implementa-
tion, PROFET can predict training latency on multiple distinct
GPU devices. Thorough experiments reveal PROFET outper-
forms contemporary related work. Other than the quantitative
superiority of PROFET, predicting latency without revealing
implementation detail makes PROFET suitable in a cloud where
an algorithm developer and resource providers differ.
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