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Abstract—Many data mining workloads are being analyzed in large-scale distributed cloud computing environments which provide
nearly infinite resources with diverse hardware configurations. To maintain cost-efficiency in such environments, understanding the
characteristics and estimating the overheads of a distributed matrix multiplication task that is a core computation kernel in many
machine learning algorithms are essential. This study aims to propose a Matrix Multiplication Performance Estimator on Cloud (MPEC)
algorithm. The proposed algorithm predicts the latency incurred when executing distributed matrix multiplication tasks of various input
sizes and shapes with diverse instance types and a different number of worker nodes on cloud computing environments. To achieve
this goal, we first analyze the characteristics of distributed matrix multiplication tasks. With characteristics generated from qualitative
analysis, we propose to apply an ensemble of non-linear regression algorithm to predict the execution time of arbitrary matrix
multiplication tasks. Thorough experimental results reveal that the proposed algorithm demonstrates higher accuracy than a
state-of-the-art machine learning task performance estimation engine, Ernest, by decreasing the Mean Absolute Percentage Error
(MAPE) in half.
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1 INTRODUCTION

R ECENT improvements in hardware and software sys-
tems have made it possible to process large-scale

datasets that were previously infeasible. To accommodate
the increasing number of big-data analysis applications,
systems are increasingly deployed to cloud computing en-
vironments which provide scalability and fault tolerance
while reducing the overheads incurred by operational tasks.
Cloud computing services offer various instances with dis-
tinct hardware configurations, and many big-data process-
ing software platforms utilize those resources in a scale-
out manner [1], [2], which reduces the efforts required for
managing large-scale distributed computing resources and
allows application developers to focus only on critical tasks.

In many data mining algorithms, Matrix Multiplication
(MM) is a core computation kernel that is well known
for incurring significant computational overheads. For ex-
ample, the multiplication of two dense matrices is the
dominant overhead during the feedforward and backward
propagation steps in a deep neural network [3]. Similarly,
the core computational kernel in a multilayer perceptron
classifier involves multiplication of two dense matrices, i.e.,
features of the input mini-batches and weight vectors of
intermediate layers [4]. In many recommendation systems,
the main kernel task of matrix factorization algorithms such
as Nonnegative Matrix Factorization (NMF) [5] and SVD [6]
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is dense-dense MM. Thus, to help users select a cost-efficient
environment for data mining job execution, it is essential to
estimate the MM performance on diverse cloud computing
environments that provide various instance types and dif-
ferent number of worker nodes to execute a job.

However, despite the importance of an MM task in
machine learning, comprehensive performance analysis and
modeling of a distributed cloud computing environment
have not yet been thoroughly conducted. Some methods,
e.g., Ernest [7], CherryPick [8], and PARIS [9], focus on
predicting machine learning task performance in a cloud
computing environment. These methods rely on scale-based
sampling to estimate the latency of completing a task with
the entire original input dataset while showing sufficient
accuracy for some machine learning tasks. However, they
exhibit poor performance in predicting the latency of dis-
tributed MM tasks because the algorithms fail to capture
the complexity of the task.

In this paper, we propose the MPEC algorithm to predict
the latency of MM tasks with arbitrary shapes and sizes
when they are executed using multiple cloud instance types
with a various number of worker nodes. The goal of this
paper is not to optimize the performance of MM tasks on a
cloud computing environment. Many studies have investi-
gated performance optimization and modeling of MM tasks
on multi-core shared memory machines using hardware-
optimized libraries, such as OpenBLAS [10]. Rather than
focusing on a problem of improving MM task performance
for specific cases, this study aims to solve a new challenge
arising from the era of cloud computing. In using cloud
computing resources, users have many options of machine
type selection with almost infinite scalability; at the time
of writing, AWS provides over 80 instance types, and non-
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system experts may have difficulties comprehending the
characteristics of each instance type.

To achieve the goal of modeling and predicting the
performance of diverse MM tasks on cloud resources, we
propose 16 features to model MM task characteristics on
the cloud, such as the total number of multiply operations,
shuffle overheads, and hardware specifications. Using these
selected features, an ensemble model was built using mul-
tiple gradient boosting (GB) regressors [11]. To predict the
latency of an arbitrary MM task when the number of worker
nodes changed, the proposed MPEC algorithm logically
partitions the original matrices of an MM task and syntheti-
cally generates an MM task whose latency can be predicted
by using the model we propose. It multiplies the amount
of overhead by the predicted latency of the synthetically
generated MM task to estimate the response time of the
original MM task. Furthermore, we propose an intelligent
heuristic to generate various MM task training datasets to
mitigate offline experiment costs. In the heuristic, we use the
Latin Hypercube Sampling (LHS) [12] algorithm to generate
various exclusive experiment cases from a few representa-
tive MM workloads. We apply the D-optimal algorithm [13]
to the generated cases to select optimal experiment scenarios
without sacrificing model prediction accuracy.

Thorough experiments reveal that the latency predic-
tion accuracy of the proposed algorithm demonstrates an
error rate less than 10% MAPE regardless of target cloud
instances, and it outperforms other predictor models that
employ a linear scaler. Applying the LHS and the D-
optimal algorithm to generate optimal training datasets
significantly reduces the overhead of running many of-
fline experiments by 90% with only marginal degradation
of prediction accuracy. The proposed Design of Experi-
ments (DoE) method [13] generates a unique combination
of cloud instance types and MM scenarios, and it allows
the prediction of MM task latency for instance types that
the experiments have not been undertaken. Comparing the
proposed method to Ernest [7] which is a state-of-the-art
machine learning task performance estimator, it is revealed
that MPEC provides 9% less MAPE on average for a diverse
set of MM task latency predictions. Furthermore, compared
to most other performance estimator systems that rely on
a scale-based sampling methods and require separate ex-
periments for different types of input datasets and cloud
instance types, the proposed MPEC algorithm can reuse
experimental results from previous runs and significantly
improve experimental efficiency. In summary, major contri-
butions of this paper are as follows

• Characterization of distributed MM tasks and cloud
computing instance types

• Proposal of unique features to effectively represent
distributed MM tasks

• Prediction of MM task latency across different cloud
instance types

• Suggestion of a scale-out algorithm to predict MM
task latency with different numbers of worker nodes

• Employing an intelligent algorithm to generate com-
prehensive MM task scenarios while minimizing re-
dundant experiment cases

The rest of this paper is organized in the following way.

Section 2 provides motivating examples of dense MM tasks
and challenges that we want to solve. Section 3 analyzes
characteristics of dense MM tasks on distributed cloud
environments. Section 4 describes the architecture and algo-
rithms of the proposed MPEC system. Section 5 explains a
heuristic to generate optimal training datasets of distributed
MM scenarios. Section 6 thoroughly evaluates MPEC. Sec-
tion 7 covers related works, and Section 8 concludes this
paper.

2 BACKGROUND AND MOTIVATION

MM tasks are widely in-use for many machine learning jobs
on cloud. We present data mining jobs that use dense MM as
the core computation kernel and how the distributed dense
MM performance on cloud can vary for different cloud
configurations and MM scenarios.

2.1 Dense Matrix Multiplication For Data Mining Jobs

Many data mining jobs utilize dense MM as a core com-
putation kernel to construct a model with minimized pre-
diction error. Figure 1 illustrates the NMF [5] algorithm,
which is widely used in recommendation systems. The NMF
algorithm factorizes an input sparse matrix A into two
dense matrices W and H without a negative element. Let
us assume that the dimension of input sparse matrix A is
M × N , and the rank is K . Review scores can therefore
be well represented in this format, where M is the number
of users, N is the number of items, and K is the number
of hidden factors that we want to embed in the model. In
Figure 1, a factorized matrix W (dimension: M × K) rep-
resents the relation between each user and hidden factors,
and factorized matrix H (dimension: K × N ) represents
the relation between each item and hidden factors. Matrices
W and H are computed iteratively by multiplying input
matrix A, W , and H of previous iterations. In the numerator
of the NMF formula used to calculate Hnew matrix, the
current W t and A are multiplied (dense-sparse MM). In the
denominator,W t andW matrix are multiplied (dense-dense
MM) followed by multiplying Hold (dense-dense MM).

As another example, Multi-Layer Perceptron (MLP) clas-
sifiers heavily rely on dense-dense MM. The MLP algorithm
(Figure 2) comprises multiple hidden layers where each
layer is composed of multiple neuron nodes. The nodes in
each layer are fully connected to nodes in the next layer
where linear combinations of weight vectors are applied
(feed-forward propagation). The MLP classifier performs
back-propagation to minimize classification errors. In the
MLP feedforward step, dense MMs occur between each
layer. For example, an input matrix is formed by recording
each input record in a row and generating a feature value
in each column. Thus, input records with f features that
are packed with b mini batches form a b × f dense matrix.
The input data mini batch is fully connected to the first
hidden layer with h1 neuron nodes to form a weight matrix
of f × h1. Dense MM of (b × f) × (f × h1) occurs in the
feedforward propagation step and continues to the output
layer.

To measure the importance of a dense MM task quanti-
tatively in real-world data mining applications, we measure
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Fig. 1: Dense matrix multiplication application - Nonnega-
tive Matrix Factorization
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Fig. 2: Dense matrix multiplication application - Multi-Layer
Perceptron classifier

the ratio of dense MM time to the overall job completion
time (Figure 3). Here, experiments were conducted with
four AWS EC2 R4.2xlarge instances with Apache Spark 2.2.0
installed on Ubuntu 16.04. Note that OpenBlas [10] is a
hardware-optimized library installed on each Spark worker
to fully utilize CPU cores fully.

Figure 3a shows the percentage of MM task time re-
quired to complete an NMF job. For the NMF job, we
used the MovieLens1 dataset that contains user-movie rating
information. In the experiment, we used ml-latest dataset
which contains 270,000 users, 45,000 movies, and 26,000,000
ratings. We implemented the NMF algorithm on Spark with
provided linear algebra libraries [14]2. To measure the dense
MM latency precisely, we invoke the take(1) Spark action to
execute each transformation. In the NMF implementation,
W t × A and A × Ht are sparse-dense MM. Initially, we
attempted to implement the task as sparse matrix × dense
MM. However, this did not perform well compared to an
implementation that transforms the sparse matrix into a
dense matrix to perform dense× dense MM. We suspect the
reason for the poor performance was a lack of an optimized
library for sparse matrices. This observation conforms to
the experimental results presented by Liu. et. al. [15]. Fur-
thermore, at the time of writing, the Spark linear algebra
library does not support sparse × dense MM natively; the
sparse matrix is transformed into a dense matrix internally
prior to the multiplication. In the experiment, we updated
the W and H matrix for five iterations with different
rank values (96 and 192). Overall, the dense MM takes
approximately 98% of the total NMF job completion time.

1. https://grouplens.org/datasets/movielens/
2. https://github.com/kmu-bigdata/dense-mm-workload
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Fig. 3: Importance of the dense matrix multiplication task in
real-world data mining jobs

The remaining time is taken to read input data, write the
outcome, transpose the matrix, and perform element-wise
matrix operations.

Figure 3b shows the ratio of dense MM tasks to complete
the MLP classifier. In this experiment, we used the MNIST
dataset3, which contains 60,000 hand-written number im-
ages each of which has 780 features (image pixels). We
set the mini-batch size to 2002, with three hidden layers
(196, 100, and 25 neuron nodes) and a single output layer
with ten classes. In Figure 3b, the horizontal axis is the
number of iterations, and the gray bar indicates the ratio
of dense MM tasks. When the number of iterations is 10, the
dense MM task is not dominant. However, as the number of
iterations increases (1,000), dense MM takes approximately
97% of total MLP classifier execution time. As the number
of iterations increases, we could achieve better training
accuracy with denser MM tasks.

From the experimental results shown in Figure 3, we
can observe the importance of dense MM task for real-
world data mining applications. It is evident even for NMF
implementation with a sparse input dataset, it is evident that
dense MM tasks are essential to expedite the completion of
data mining jobs with sparse inputs.

2.2 Distributed MM Performance Variation on Cloud

When running distributed MM tasks on a cloud computing
environment, many factors can impact the overall response
time. To understand the peculiarity of MM performance in
a distributed cloud computing environment, we analyzed
the performance of dense MM with various input sizes
on distinct cloud computing instances. In the experiments,
we multiplied two square matrices (32000, 32000, 32000)
on AWS EC2 C4.8xlarge, M4.4xlarge, R4.2xlarge, I3.2xlarge,
and D2.2xlarge instances that have unique hardware features
with hourly on-demand price of $1.591, $0.8, $0.532, $0.624,
and $1.38, respectively4. We chose these instance types,
because they have a similar memory size of around 60GB
which can execute the given MM workload. We used the

3. https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
multiclass.html

4. As of Aug. 2019, with the Linux OS in the US West (Oregon) region

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
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Fig. 4: Normalized execution times of MM tasks with differ-
ent shapes and number of machines (lower is better)

Apache Spark MLlib BlockMatrix library [14] to conduct the
experiments with four machines with OpenBLAS installed.

In Figure 4a, the horizontal axis represents instance
types, and the bar values in the primary vertical axis indi-
cate the latency to complete a MM task for each instance
type. The secondary vertical axis shows the normalized
cost of running EC2 instances (price × running time); the
value is marked with blue diamond marks. As shown in the
figure, distinct instance types result in significantly different
latency and cost performance, and users should be cautious
of this when attempting to create an optimal execution
environment. Figure 4b shows the impact of matrix shapes
on the latency to complete a MM task. In the figure, the
horizontal axis represents input matrix shapes and the ver-
tical axis shows MM task latency. The multiplication of two
non-square matrices exhibits a significantly different per-
formance compared to square MM even when the number
of multiply operations is the same, i.e., the number of left
matrix rows × left matrix columns × right matrix columns.

Figure 4c shows the latency of three different MM tasks
when they are executed with a different number of Spark
worker nodes. In this experiment, we created an Apache
Spark cluster using AWS EC2 R4.2xlarge instances with
different numbers of worker nodes (4, 9, 16, 25). Here, the
four left-most bars show the latency of completing an MM
task with a large left row, and the middle four bars represent
an MM task with two square matrices. The last four columns
show MM tasks, where the left column (or right rows) is
large. The numbers in parentheses in the horizontal axis are
the number of left rows, left columns, and right columns.
As can be seen, MM task latency decreases as the number of
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Fig. 5: Block-based distributed matrix multiplication and
related overhead in each step. Network, disk I/O, and CPU
are the principal resources of the execution.

worker nodes increases; however, latency improvement rate
differs with different matrix shapes. For example, when the
left column is large, the change ratio is 1.0, 0.79, 0.6, and 0.4
as the number of Spark worker nodes changes to 4, 9, 16,
and 25, respectively. For the square matrix, the change ratio
is 1.0, 0.55, 0.3, and 0.22.

In summary, considering there are more diverse matrix
shapes in realistic MM tasks and instance types than those
presented in Figure 4, estimating the latency of MM tasks
with matrices of various shapes and sizes can be very
challenging.

3 CHARACTERISTICS OF MATRIX MULTIPLICATION
IN DISTRIBUTED COMPUTING ENVIRONMENTS

The optimization of distributed MM has been well studied
in the literature. In the HPC community, many studies have
focused on minimizing communications cost using the MPI
model. The representative methods include SUMMA [16]
and CARMA [17]. These methods demonstrate optimal per-
formance mainly on multi-core shared memory machines by
carefully designing an algorithm considering the underlying
hardware specifications. The proposed MPEC algorithm is
complementary to previous MM performance optimization
work in a cloud computing environment. Previous work on
the cloud focused on solving an optimization problem spe-
cific to an instance type, while this proposed algorithm tries
to solve a different problem of finding an optimal instance
type to complete an MM task. Using previous optimization
studies with this proposed algorithm together can provide
more cost and performance efficient environments.

Apache Spark [2] is widely used to conduct various
machine learning tasks on a distributed cloud computing
environment to process large-scale datasets. The primary ab-
straction in Spark is a Resilient Distributed Dataset (RDD),
which represents a read-only collection of objects parti-
tioned across a set of machines. Spark manages large-scale
data using partitions that help to parallelize distributed data
processing while guaranteeing fault tolerance with lineage
and task execution optimization via lazy evaluation [2].

In Spark, matrix-related linear algebraic operations are
supported in the MLlib library [14] with various matrix-
partitioning schemes (row- and block-based) and a set of
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Fig. 6: Comparison of partition scheme in matrix multipli-
cation

distributed operation APIs on the matrix. To multiply two
matrices, Spark MLlib automatically identifies the opti-
mal way to distribute tasks based on the input matrix-
partitioning scheme and uses the Scala Breeze library to
perform multiplication. Consider C = A × B, i.e., the
multiplication of two matrices. If A is row-partitioned and
B is column-partitioned, the Cartesian product is performed
for each row block of A and column block of B. If both
A and B are block-partitioned, the block dimension of
the resulting matrix C is determined by considering the
number of worker nodes and input block dimensions. A
worker node that is responsible for each resulting block
fetches all the necessary blocks from A and B to execute
a multiplication operation locally.

Figure 5 shows an example of block-based MM. Here,
the left matrix A, right matrix B, and the result matrix C
are 2 × 3, 3 × 2, and 2 × 2 block matrices, respectively.
In Spark, a cogroup operation allows a worker node that
is responsible for the result block, to collect the necessary
left and right matrix blocks by block IDs. During a cogroup
operation, network overhead is dominant. After collecting
all necessary blocks, each worker node performs product
operations, followed by element-wise addition operations.
In this step, the I/O overhead that reads the fetched blocks
from a local.dir location and the computational overheads
are dominant.

Other than block-based partitioning in Figure 5, row-
and column-based partitioning can also complete a dis-
tributed MM task. Row-partitioning the left matrix and
column-partitioning the right matrix allows it to perform
inner-product between rows of the left matrix and columns of
the right matrix that generates complete elements in an out-
put matrix. Outer-product is doable by column-partitioning
of the left matrix and row-partitioning of the right matrix.
Multiplying a column in the left matrix to a in the right
matrix results in a matrix with an output matrix size, and
outputs from each multiplication should be summed to
complete an MM task.

To compare the impact of distributed matrix partitioning
for the MM task performance, we conduct various MM
tasks using Apache Spark with four AWS EC2 R4.2xlarge
instances. In Figure 6, we differentiate MM task scenarios
expressed as (left matrix rows, left matrix columns, right
matrix columns). In each scenario, we show the latency
when using block partition, inner-product, and outer-product.
Overall, block-partitioning shows the best performance

compared to other methods. The inner product shows close
performance for a square-square case (Figure 6a), but block-
partitioning performs better in other cases. We observed
that the outer product could not complete some MM tasks
due to an out-of-memory error while storing a large output
matrix in an executor. As shown in Figure 6, block-based
partitioning shows the best performance. Furthermore, the
row- or column-partitioning may perform poorly when the
operands of a multiply operation changes (such as A × B
and B×A) because this will change the partitioning scheme
of the left and right matrices. Therefore, this paper focuses
on modeling and predicting MM task performance of block-
based partitioning because it shows good performance with
generality.

4 DISTRIBUTED MM PERFORMANCE ESTIMATOR

Many cloud computing service providers offer many di-
verse cloud computing instances with almost infinite scal-
ability for users to select based on their demands. However,
users may have difficulty in setting an optimal environment
for a variety of tasks. This study aims to provide key
indications to help establish an optimal cloud environment
for various machine learning jobs in which the core kernel
is the distributed MM tasks. To achieve the goal, we present
an MPEC algorithm that predicts the latency of distributed
MM tasks of arbitrary shapes of sizes in scale-out environ-
ments with various instance types. Formally, we predict the
completion time of an MM task where the left, right, and
result matrices are denoted as A, B, and C , respectively
(A × B = C). The numbers of rows and columns of A are
denoted as LR and LC, respectively, and a pair is denoted
as (LR, LC). Similarly, the dimensions of the right and
result matrices are denoted as (LC, RC) and (LR, RC),
respectively. Note that the number of columns in the left
matrix and the number of rows in the right matrix should be
equal, and we denote both as LC. The first goal of this paper
is to build an arbitrary MM task latency prediction model, f ,
by using train datasets that are generated from Wtrn Spark
worker nodes. The next goal of this paper is to predict the
latency of arbitrary MM tasks when the number of worker
nodes changes, and we denote the number of worker nodes
that we want to predict as Wprd, where Wtrn 6= Wtrn

(generally, Wprd > Wtrn). If the number of worker nodes
is not relevant to the prediction or training step, the number
of worker nodes is simply denoted as W . Unless otherwise
stated, we assume a case where the number of worker nodes
is Wtrn when we discuss MM latency prediction.

We assume that A, B, and C are block-partitioned matri-
ces. According to the task distribution algorithm of Apache
Spark MLLib [14], it is better for the number of output
matrix blocks to be equal with the total number of worker
nodes [18]. Thus, we consider cases where the number of
worker nodes equals the number of output matrix blocks.
For load-balancing, we constrained the number of Spark
worker nodes (W ) to the square of an integer to evenly
partition the rows and columns of the input and output
matrices [18]. Under this constraint, the block size of left
matrix row, left matrix column, and right matrix column are
LR√
W

, LC√
W

, RC√
W

, respectively, and we name each block size
as lr, lc, and rc, respectively. To express block size of row
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and column together with W workers, we use BSW (r, c).
The notations used in this paper are summarized in Table 1.

The overall architecture of the proposed system is shown
in Figure 7. The system is composed of MM performance
modeling and a scale-out prediction step. In the MM mod-
eling step, MPEC builds an MM task latency prediction
model, f , with training datasets generated from Wtrn Spark
worker nodes by proposing unique features to represent
characteristics of distributed MM tasks. The scale-out pre-
diction step provides expected latency of the input MM task
when the number of worker nodes increases or decreases,
i.e., Wprd 6=Wtrn.

4.1 Matrix Multiplication Performance Modeling
MM performance modeling comprises the generation of
training datasets, feature extraction (numbers of rows and
columns of the left matrix, the number of columns of the
right matrix, and various hardware features), and modeling.
Using the features, we propose to build an ensemble model
using bagging [19] with GB regressors [11], a tree-based
non-linear model algorithm, to predict the latency of unseen
scenarios in MM tasks.

4.1.1 Training Data Generation
In the training dataset generation step, the proposed method
measures the latency of various shapes and sizes of MM
tasks that can be broadly categorized into square × square,
long-thin × short-wide, and short-wide × long-thin tasks.
To cover the wide range of shapes and sizes of MM tasks,
this step synthetically generates arbitrary MM workloads
from each category. To record the latency of various MM
tasks on different instance types, the proposed method
performs offline experiments in a Spark cluster with Wtrn

workers of various instance types. We use the Spark web UI
REST API to gather execution performance metrics.

4.1.2 Feature Extraction
As discussed in Section 3, the MM overhead in a distributed
computing environment involves various resources. To ac-
count for diverse overheads, the proposed method utilizes
the dimensions and products of input matrix block sizes,
i.e., lr, lc, rc, lr × rc, lr × lc, lc × rc, lr × lc + lc × rc, and
lr × lc × rc, as features to model MM performance. Here,
the lr × rc term represents the size of the output matrix,
the lr × lc and lc × rc terms represent the size of the left
and right matrix blocks, respectively, where the size impacts
the network and I/O disk overheads due to shuffling. The
lr × lc × rc term represents the total number of multiply
operations.

Notation Meaning
A the left matrix to multiply
B the right matrix to multiply
C the output matrix of multiplication of A×B
LR the total number of rows in the left matrix
LC the total number of columns in the left matrix
RC the total number of rows in the right matrix
lr the block size of left matrix row
lc the block size of left matrix column
rc the block size of right matrix column

Wtrn the number of worker nodes used in train data generation
f MM latency predict model. Train data from Wtrn workers

Wprd the number of workers to predict MM latency (6= Wtrn)
(r, c) a pair of value that corresponds to row and columns
BSW block size of a matrix with W workers expressed in (r, c)
TW the expected MM latency when the number of workers is W

TABLE 1: Distributed MM task notations

In addition to MM task features, we also generate hard-
ware specification features to predict MM latency in various
EC2 instance types. Among the instance types that AWS
provides, we select five distinct instance types that empha-
size different characteristics. They are M4, C4, R4, I3, and
D2. M4 is a general-purpose instance type, C4 is a compute-
optimized instance type with superb CPU performance, and
R4 is a memory-optimized instance type with a higher RAM
size. I3 and D2 instances are storage-optimized instance
types with a large volume of storage; I3 instances equip local
NVMe SSDs while D2 instances equip local HDD storage.
Instead of using hardware specifications provided by AWS,
we measured the performance of CPU, memory, disk, and
network performance to reflect them as detailed features in
a realistic scenario [20]. To create CPU-related features, we
reference the /proc/cpuinfo file that provides processor infor-
mation with a number of CPU cores, cache size, and speed
that we refer to as vCPU, cache size, cpu mhz, respectively.
A Linpack [21] benchmark measures how fast a computer
solves linear algebra problems. To use them as a feature, we
set the input matrix size to 10, 000 and measured GFLOPS
and use it as a linpack feature. To measure the performance
of the disk IO, we create features of disk read bandwidth
and disk write bandwidth using the dd system command.
We performed the writing and reading of a 1GB file into
a directory that a Spark executor uses as spark.local.dir. To
create a network-performance related feature, we measure
network bandwidths using iPerf3 command and use the out-
put as a network bandwdith feature. For the memory feature,
we use the configured memory size of each instance. After
measuring the feature values, we apply min-max scaling to
force the value between 0.0 and 1.0 to avoid the unexpected
impact of different original feature value ranges.

Unlike the proposed MPEC system, previous methods
that focus on predicting the performance of data mining
tasks on cloud computing resources use a scale-based sam-
pling mechanism to generate input features for model-
ing [7], [8], [9]. Generally, these methods select a consider-
ably small portion of the input dataset and measure perfor-
mance using a subset of the dataset. Using the outcomes
from the sample dataset, these methods apply distinct
predictive algorithms, e.g., a non-negative linear equation
(Ernest [7]), Bayesian optimization (Cherrypick [8]), and
random forest (PARIS [9]) to make a prediction. However,
the scale-based sampling mechanism cannot capture the
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complex nature of the distributed MM tasks, and it consid-
ers either lr or rc based on the sampling method. Further-
more, MPEC uses more detailed hardware specifications as
features. Accordingly, the proposed method in this paper
demonstrates superior performance owing to its rich set of
features (Section 6).

4.1.3 Modeling Distributed Matrix Multiplication Task La-
tency

In this step, the proposed method builds a model to predict
the performance of multiplying various matrices. The pro-
posed method utilizes an ensemble [19] of GB regressors [11]
as a model.

GB [11] is a flexible non-parametric statistical learning
approach for classification and regression. The main idea be-
hind GB is combining multiple weak learners that are gener-
ally applicable to only simple linear relations incrementally
to model complex and non-linear interactions among fea-
tures. A GB model is fitted in a forward stage-wise pattern,
where at each stage, a new weak learner model is fitted to
the residual of the current model; the model focuses more
on correcting errors from the previous iterations. Unlike
a similar decision tree method, the GB method is robust
against overfitting as it creates an ensemble of many weak
learner models [22].

Ensemble models in machine learning combine the de-
cisions from multiple models to improve overall predictive
performance. We use the bootstrap aggregating (bagging)
method [19] which involves making each model in the
ensemble have the same weight to improve the stability
and accuracy of the regressor. It averages the model to
reduce variance and helps to avoid over-fitting which im-
proves generality. In our proposed system, we use three
GB regressors with different hyper-parameters of number of
estimators and loss function. Son et. al. [23] proposed to use
a GB regressor for a similar purpose, but using an ensemble
of multiple GB regressors can improve the generality of the
model and accuracy.

4.2 Matrix Multiplication Performance Prediction on a
Scale-out Environment

In a cloud computing environment, users can easily add or
remove computational resources, but estimation of perfor-
mance impact due to changes is very challenging as there
are many factors that might cause differences in perfor-
mance. Scale-out prediction modules in MPEC are respon-
sible for predicting MM task latency when the number of
worker nodes changes in a Spark cluster.

4.2.1 Characters of Distributed Matrix Multiplication Over-
head

In MM task performance prediction, scaling the number of
worker nodes linearly cannot capture the non-linear inter-
actions of various characteristics that influence the overall
MM task completion time. To present the characteristics of
MM task overheads as W changes, we summarize three
dominant overhead factors in each worker node that is

responsible for an output block in Equations 1 (number of
products), 2 (shuffle amounts), and 3 (output block size).

Product(W ) =
LR√
W
× LC√

W
× RC√

W
×
√
W

=
LR× LC ×RC

W

(1)

Shuffle(W ) =
LR√
W
× LC + LC × RC√

W

= LC × (LR+RC)√
W

(2)

OutputBlockSize(W ) =
LR√
W
× RC√

W
=
LR×RC

W
(3)

Here, as W increases, the number of product operations
and the output block size overhead in each worker node
responsible for a resulting block is proportional to 1

W , while
the shuffle overhead to complete an output block is propor-
tional to 1√

W
. Due to differences in the overhead change

ratio, distinct overheads must be treated differently as W
changes.

4.2.2 Predicting Matrix Multiplication Latency on a Scale-
out Environment
We propose a novel unit block-based MM latency estimation
algorithm that considers various overhead factors in MM
tasks on a scale-out environment. To predict the latency of
an MM task of A × B with Wprd workers, we first block-
partitionA andB, where the block sizes areBSWprd

and the
number of blocks in each dimension is

√
Wprd. Note that we

refer to these partitions as unit-blocks. Due to the non-linear
interactions of multiple factors in MM task overheads, we
cannot directly use the expected outcomes from the MM
latency prediction model, f , which are generated using MM
train datasets obtained with Wtrn workers (presented in
Section 4.1). Instead, we generate a synthetic MM task with
the same unit-block size (BSWprd

) but different numbers of
workers (Wtrn) and number of blocks (

√
Wtrn).

Here each output block size of the synthetic MM task
is the same as that of the original MM task we aimed to
predict (i.e.,BSWprd

); however, the total number of products
required to conduct and shuffle overheads differs as the
sizes of the left and right matrices differ. Formally, the total
number of products of an MM task synthetically generated
from the unit-block is proportional to BSWprd

×
√
Wtrn,

while that of the original MM task is proportional to
BSWprd

×
√
Wprd. Relative to the shuffle overhead, each

output block must fetch the
√
Wtrn rows from A and√

Wtrn columns from B in the synthetic MM tasks, while
the original MM task must fetch the

√
Wprd rows from A

and
√
Wprd columns from B. After obtaining the expected

latency of executing an MM task of BSWprd
with Wtrn

workers using f , the proposed algorithm multiplies
√

Wprd√
Wtrn

by the expected latency of the synthetic MM task to calculate
the expected latency of the original MM task. Here, the
rationale is that MM tasks with equal output block size
and a different number of worker nodes incur proportional
shuffle and compute overheads that must be processed by
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Fig. 8: Scaling-out prediction example

each worker node, and we multiply the ratio of shuffle
and compute overheads by the expected latency of the
synthetic MM task. The proposed algorithm is summarized
in Equation 4.

TWprd
= f(

√
Wtrn ×BSWprd

)×
√
Wprd√
Wtrn

(4)

Figure 8 shows an example of MM task latency esti-
mation with a different number of worker nodes. In this
example, we assume that the dimensions of A, B, and C are
(48000, 24000), (24000, 36000), and (48000, 36000), respec-
tively, and we use a constructed model using train datasets
obtained with four Spark worker nodes, i.e., Wtrn = 4.
With this example, we demonstrate how we can predict the
latency of an MM task executed with nine nodes. When
Wprd = 9, the BS9 of the left, right, and output matrices
are (16000, 8000), (8000, 120000), and (16000, 12000), respec-
tively. A synthetic MM task with the same unit-block size
as BS9 that runs with Wtrn = 4 workers becomes (32000,
16000), (16000, 24000), and (32000, 24000). We predict the
MM task latency of the synthetic case using model, f , which
returns T4 = f(32000, 16000, 24000). Then, T4 is multiplied
by
√
9√
4

to obtain the expected latency when the original MM
task is executed with nine worker nodes.

Algorithm 1 MM task latency prediction

1: function PREDICTLATENCY((LR,LC,RC), Wprd)
2: if Wprd =Wtrn then
3: return f(LR,LC,RC);
4: else
5: ub = ( LR√

Wprd

, LC√
Wprd

, RC√
Wprd

)

6: mat =
√
Wtrn× ub

7: Ttrn = PredictLatency(mat, Wtrn)

8: ratio =
√

Wprd√
Wtrn

9: return (ratio × Ttrn)
10: end if
11: end function

Algorithm 1 shows the sequence of the scale-out predic-
tion step, i.e., the PredictScaleOutLatency function. Here, lines
2-3 mean that if the number of worker nodes a user wants

to predict is the same as the number of worker nodes used
to build train datasets, the algorithm returns the predicted
latency from a constructed model, f . Otherwise, lines 4-10,
calculate the block size of the input matrix (Line 5). Here, a
synthetic MM task is created with the calculated block size
assuming the number of worker nodes is the same as that
in the train dataset generation (Line 6). The latency of the
synthetically generated MM task (Line 7) is then predicted.
The overhead ratio is also calculated by considering the
number of blocks of the original and synthetic tasks (Line
8). In Line 9, the algorithm multiplies the overhead ratio by
the predicted latency to calculate the expected latency of the
input MM task.

5 GENERATING OPTIMAL SET OF MM EXPERI-
MENT SCENARIOS

To build an accurate model to predict the latency of arbitrary
MM tasks, it is important to generate well-represented train
datasets. Model accuracy is likely to improve as more data
points are added to the training dataset, but it might be
too expensive to perform offline experiments with a large
number of MM task cases on cloud instances with different
types. To overcome the issue, we propose an intelligent
algorithm of generating a diverse MM task scenario and
choose optimal cases among them to make offline experi-
ments compact.

5.1 Generation of Exclusive MM Experiment Cases
In the step of diverse MM task scenario generation, memory
requirements of the underlying Spark cluster should be
satisfied. Despite having an equal number of total products,
one scenario may work, and another may not. For example,
a (102, 108) × (108, 102) MM task might work, however, a
(105, 102) × (102, 105) task might cause an out-of-memory
issue because the output block size is significantly larger
(105, 105) than that of the former (102, 102) even though the
total number of products is the same (1012). We employ the
LHS algorithm to generate diverse MM experimental cases
while satisfying memory constraints.

LHS is a type of space-filling design that spreads design
points almost evenly or uniformly throughout the entire
experimental space [13]. These designs are decent choices
if the experimenter believes that interesting effects are likely
to be found in different regions in the experimental space.
With LHS, the basic idea is to obtain a sampling point
distribution close to the probability density function of the
user’s choice [12]. Thus, if one chooses uniform distribution,
LHS can spread samples more evenly across all possible
values. If we designate F features and N sample points to
generate each feature, LHS partitions each feature distribu-
tion into N intervals of equal probability and selects one
sample from each interval. It then shuffles the sample for
each feature such that there is no correlation between inputs.
The output of LHS scales values are in the range of 0.0 to
1.0. By multiplying the output of the LHS algorithm with
an arbitrary number of samples K, the values of the new
sample points would be less than K and evenly distributed
in an interval 0 to K .

To apply the LHS algorithm to MM task scenario gener-
ation, we multiply the N-three dimensional LHS algorithm
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scenarios

output to LR, LC , andRC of the input MM task, generating
N combinations of matrices distributed uniformly between
(0, 0, 0) and (LR, LC, RC). We first categorize the values of
each dimension of an MM task as High (H), Medium (M),
and Low (L), and allocate each value to LR, LC, and RC.
We use seven distinct combinations to cover various scenar-
ios, i.e., (H-L-L), (L-H-L), (L-L-H), (M-L-M), (M-M-L), (L-
M-M), and square × square MM. For each combination, we
first check the maximum size that can be executed in a Spark
environment for the generation of training datasets. For
example, the maximum sizes of MM tasks on four worker
nodes of an R4.2xlarge instance and an aggregated mem-
ory size of 244GB, are (8M -128-128), (128-8M -128), (128-
128-8M ), (75K-128-75K), (75K-75K-128), (128-75K-75K)
and (32K-32K-32K). If we generate 35 three-dimensional
sample points using the LHS algorithm and multiply each
combination by these sample points, we can create 245
(= 7× 35) evenly distributed combinations while satisfying
the memory requirements of the target Spark environment.
Using the generated MM task scenarios, final experimental
cases are generated by extracting all possible combinations
of MM task scenarios with target cloud instance configura-
tions.

5.2 Selection of Representative Experiment Cases
The set of MM task scenarios extracted from the LHS
algorithm that satisfy the underlying cluster memory re-
quirement may contain too many scenarios to be executed
in the training dataset generation step. To relieve the burden
of running too many similar experiments, e.g., linearly de-
pendent cases, we apply the D-Optimal algorithm to select a
subset of experimental cases that can represent all scenarios
well.

To apply the D-optimal algorithm to generate an opti-
mal set of MM task training data points, we express all
experiment cases as a matrix (Figure 9), where each row
contains a single MM task experiment case with a cloud
instance configuration with distinct features. For the fea-
tures, we utilized those presented in Section 4.1.2; three
features in the prediction model of a distributed MM task
(i.e., LR × LC × RC, LC × (LR + RC), and LR × RC)
and the dimension information of the matrices (i.e., LR,
LC, and RC). We denote the entire global experiment case
matrix generated by the LHS algorithm as X . The Fisher
information matrix [24] of X is expressed as XTX , which is
the inverse of the covariance matrix of X . The goal of the D-
optimal algorithm is to select z cases among x test cases (i.e.,
the number of rows in X), where z < x, while maximizing

information with the selected z experiment cases. Note that
the determinant increases as z increases.

To select z samples that maximize the information, the D-
Optimal algorithm attempts to maximize the determinant of
the Fisher information matrix (|XTX|) [24] with the selected
z rows. Maximizing the determinant of the information
matrix is equivalent to minimizing the inverse of the infor-
mation matrix (i.e., the covariance matrix), and this provides
a set of experimental scenarios that reduce the variance error
term. Alternatively, maximizing the determinant of infor-
mation matrix results in spreading the experiment cases to
the largest volume possible in the experimental region [25].
Besides, the D-optimal DoE algorithm supports the selection
of a subset of established experimental cases in irregular
spaces [25], and it well fits the selection of optimal MM
task scenarios that must meet the memory requirements of
underlying clusters.

When selecting the optimal z test cases among x possible
experiment sets, we apply the Fedorov algorithm [26] which
starts from z randomly selected samples as an experiment
scenario Z among all x scenarios in X . It exchanges a
sample from Z with points in X − Z (samples not in Z)
and stops the exchange when no further profitable exchange
is possible. Depending on the randomly selected starting z
samples, the Fedorov algorithm may suggest an optimum
local set of scenarios. Note that the AlgDesign package in
R provides an implementation of the Fedorov method that
employs the D-optimal algorithm [27].

The D-optimal algorithm suggests some optimal experi-
mental cases in the entire experimental space. However, we
must still determine how many MM tasks, i.e., z, should
be considered when performing experiments to build a
model. As z increases, the prediction accuracy of a model
improves at the cost of increased overheads in the experi-
ment. To balance between prediction accuracy improvement
and overheads, we infer the experiment stopping condition
based on the information embedded in the experiment case
matrix, Z . Here, we initially set Z to ∅, and, by incrementing
the size of Z , we run the Fedorov algorithm to obtain a
subset of optimal experiment cases. We then calculate the
increase in information by measuring the determinant of the
normalized dispersion matrix of Z , i.e., | (Z

TZ)−1

z |, which is
the exchange criterion of the Fedorov algorithm [26]. As we
continue to add more experimental MM task cases to Z , we
record the delta of improvement in the metric value (the
determinant of the normalized dispersion matrix). We stop
the experiments when the delta of improvement becomes
constant. Here, the rationale is that as we add more experi-
mental cases to Z , the information in the matrix saturates at
some points and adding more cases from a saturated point
provides marginal prediction accuracy improvement at the
expense of increased experimental overheads.

Figure 10 shows the overall process of building MM task
scenarios for generating training datasets. After determining
baseline representative MM task scenarios, we use the LHS
algorithm to generate exclusive ratio sets that are multiplied
by the LR, LC , and RC values of the baseline scenarios. To
ensure that the generated MM tasks can meet the memory
usage requirements of the Spark cluster worker nodes, we
constrain the ratio values between 0.0 and 1.0. The MM
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datasets

task scenarios are generated by combining hardware spec
features with MM task scenarios after applying the LHS
algorithm. Using the generated experimental cases, we ap-
ply the D-optimal algorithm to select a subset of MM task
scenarios. To determine how many experiments to perform,
we calculate the delta of information improvement as we
add more experiment scenarios. If the delta of improvement
stabilizes, we stop adding experiment cases.

Algorithm 2 Generating representative experiment cases

1: N - The number of exclusive test cases to generate
2: M - Representative MM scenarios that satisfy memory

requirements
3: LHSk - k sampling points from LHS
4: dOptDet(T, k) - Returns determinant of the normalized

dispersion matrix with k optimal rows from T
5: function GENERATEEXPERIMENTSCENARIO(N )
6: Ti ← ∅, i = 1, . . . , N
7: for each matrix dimension m ∈M do
8: T ← T ∪ (m× LHS N

|M|
)

9: end for
10: Di ← ∅, i = 1, . . . , N
11: D1 ← dOptDet(T, 1)
12: for i = 2, . . . , N do
13: Di ← dOptDet(T, i− 1)− dOptDet(T, i)
14: if Di = Di−1 then
15: return [T1 . . . Ti−1]
16: end if
17: end for
18: end function

Algorithm 2 represents the process of the offline mod-
eling step; GenerateExperimentScenario function. Lines 1-4
show prerequisites for the function. Line 6 initializes a vari-
able to store experimental cases. Lines 7-9 fills experimental
cases by multiplying LHS generated samples (LHS N

|M|
) to

representative MM task scenarios that meet the memory
requirements. Line 10 initializes a variable to store the
determinant of information matrix with k rows, and Line
11 calculates the determinant with the minimum number
of experimental cases. Line 13 calculates the delta of the
determinant of the normalized dispersion matrix returned
from the D-optimal algorithm. If the delta becomes constant,
the function returns the current set of experimental cases
recommended by the D-optimal algorithm.

6 EVALUATION

We thoroughly evaluate the performance of the proposed
algorithms with various types of AWS EC2 instances, input
matrix sizes, shapes, and numbers of worker nodes. In
summary, applying an ensemble GB regressor algorithm
with the proposed features outperforms a linear regressor
and exhibits 79% lower RMSE. Evaluations of the proposed
method with various types of cloud instances demonstrates
the effectiveness of the proposed algorithms regardless of
the underlying instance types. The proposed scale-out per-
formance estimator provides a less than 10% MAPE, which
is superior to a linear scaler with a penalty term (29%
MAPE).

Regarding the effectiveness of an algorithm in choosing
optimal training datasets, generating MM task scenarios us-
ing the LHS algorithm outperforms other heuristics, includ-
ing the expert pick, with at least 52% (relative to RMSE)
higher accuracy. The D-optimal algorithm reduces the over-
heads of the experiments by approximately 90% with a less
than 0.22% reduction (R2) in accuracy. Finally, compared to
Ernest which is a state-of-the-art machine learning task per-
formance estimator, the proposed algorithm demonstrates
9% (relative to MAPE) improved accuracy on average across
diverse MM task scenarios.

6.1 Setup

The experiments were conducted on R4.2xlarge (8 vCPUs,
61GB RAM), M4.4xlarge (16 vCPUs, 64GB RAM), C4.8xlarge
(36 vCPUs, 60GB RAM), I3.2lxarge (8 vCPUs, 61GB RAM)
and D2.2xlarge (8 vCPUs, 61GB RAM) AWS EC2 instances
that have similar memory configurations. Please note that
the feasibility of running given MM tasks rely on the ag-
gregated memory size of a cluster, and we make the total
RAM size the same to apply the same set of MM tasks.
Using the EC2 resources, an Apache Spark [2] cluster was
created with different numbers of worker nodes according
to the experimental scenarios. Here, we used Spark MLLib
version 2.2.0 to perform linear algebraic operations, and
we used the spark-ec25 tool to deploy the Spark cluster.
Each EC2 instance includes OpenBLAS [10], a hardware-
optimized linear algebra library to fully utilize the compu-
tational capacity of the underlying resources. For all MM
task cases, we ran the experiments five times and recorded
the median value to remove the impact of unusual noise
from the cloud resources. We used scikit-learn 0.18.1 with
Python 2.7.12 to perform modeling andR 3.2.4 is used with
AlgDesign 1.1 to apply the D-optimal selection using the
Fedorov algorithm [27]. In the evaluation, we used training
and test datasets generated by the algorithm presented in
Section 5.

To evaluate the proposed system quantitatively, we used
the coefficient of determination (R2), the RMSE, and the
MAPE. As shown in Equation 5, the R2 metric measures
the ratio of resemblance of the predicted outcome to the
true value, where the best score is 1.0 (larger values are

5. https://github.com/kmu-leeky/spark-ec2
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better). The R2 metric is widely used to evaluate the quality
of regressor prediction.

R2 =

∑
i
(ŷi − y)2∑

i
(yi − y)2

(5)

The RMSE metric measures the amount of difference be-
tween the predicted and true values. Differing from RMSE,
the MAPE measures the ratio of difference between the true
and predicted values to the true value. In MM latency pre-
diction, the task completion time may vary significantly as
we evaluated an extensive set of test cases; thus, presenting
both the error ratio and absolute error facilitates a thorough
evaluation of the quality of proposed models.

6.2 Matrix Multiplication Performance Modeling Evalu-
ation
We first evaluate the efficiency of MM performance mod-
eling module that aims to predict the MM latency when
the number of worker nodes in the training step (Wtrn) are
same as the ones in the prediction step (Wprd).

6.2.1 Feature Importance
The proposed method uses various combinations of left
and right matrix block sizes and instance specifications as
features to model complex distributed MM operations. In
Figure 11, we visualize the relative importance of the pro-
posed features calculated by counting the number of times
a feature is selected for splitting a GB regressor tree, where
each split is weighted by the improved performance [28].
Here, the GB regressor method is performed 100 times
with all the training datasets and the average importance
value is shown with the minimum and maximum values
in error bars. The total number of multiplication operation
(lr × lc × rc) term is the dominant feature (0.246). Features
that represent the output matrix size (lr×rc) and the shuffle
overheads (lr× lc+ lc× rc) are also dominant factors, with
values of 0.195 and 0.113, respectively. This observation
corresponds to Figure 4b, which shows that latency may
differ for MM tasks with the same number of multiplication
operations (lr×lc×rc) but with different shapes and output
sizes, e.g., long-thin × short-wide and short-wide × long-
thin tasks. The next dominant feature is the linpack which
measures the CPU performance of cloud instances with a
value of 0.08, and this implies that the CPU performance
is the most important feature in deciding the latency of
distributed MM tasks with different instance types. The
next important hardware feature is the network with a value
of 0.06 that directly impacts the shuffle performance for a
distributed MM task. To quantitatively analyze the impact
of each feature on model accuracy, we show the coefficient
of determination value along the secondary vertical axis.
Starting with the most important feature, we cumulatively
add the next most important feature (in the x-axis) and
construct a model. The best model accuracy is achieved
only with the four most important features: the number
of multiplication operations, the output matrix size, the
amount of shuffle overheads, and the linpack CPU feature.
We can observe that the model accuracy spikes when adding
the linpack feature on top of three dominant MM dimension
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Fig. 11: Relative importance of features and the impact on
model accuracy. The number of multiply operations, output
matrix size, the shuffle overhead, and linpack are the most
important features.

features, and they represent MM scenarios and hardware
features across different instance types well.

6.2.2 Comparing Multiple Predictive Algorithms

In this section, we present the efficiency of using a GB
regressor to predict the execution time of MM tasks. For
comparison, experiment results from a variant of a decision
tree regression algorithm and a linear regression variant
method are presented. For the decision tree variant, we
compare GB regressor and random forest [22]. Unlike GB,
the random forest regressor builds multiple regressor trees
by randomly selecting features and samples. The GB and
random forest regressors represent the non-linear charac-
teristics of the input data while preventing overfitting by
combining outcomes from many weak learners. For the lin-
ear regression variant, we adopt non-negative least squares
(NNLS) regressor. When predicting latency, a non-negativity
constraint is imposed to avoid latency being less than zero.
The NNLS regressor finds the optimal linear model that
minimizes the prediction error using this constraint.

Figure 12a shows the prediction accuracy of the three
algorithms. For each algorithm, 100 experiments are per-
formed with 10-fold cross validation by randomly selecting
exclusive test datasets from the training datasets (no over-
lap). The average R2 value (higher R2 values are better)
is plotted in Figure 12a, with the minimum and maximum
values in error bars. The ensemble model using GB regressor
demonstrates the best accuracy with an R2 value of 0.996,
followed by a random forest regressor and NNLS, with
R2 values of 0.988 and 0.872, respectively. Figure 12a also
shows that the linear equation cannot capture the non-
linear interactions among the features proposed herein. Fig-
ures 12b (GB regressor) and 12c (NNLS) show the measured
and predicted latency in the x and y-axes, respectively. Here,
the dotted line indicates the prediction with no error (slope
of one) and the scattered points close to the line represent
accurate predictions. From the figures, we confirm that the
GB regressor provides better latency prediction accuracy.
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Fig. 12: Prediction accuracy of various algorithms

R2 MAPE RMSE
model 1 0.984 10.77% 4338
model 2 0.99 11.99% 3310
model 3 0.994 9.52% 2657
ensemble 0.995 8.7% 2204

TABLE 2: Model Ensemble and the improved performance

6.2.3 Effectiveness of Model Ensemble
In order to increase predictor model accuracy, we built a
model of an ensemble of three GB regressors. The first model
has 5,000 estimators with the least squares loss function. The
second model has 10,000 estimators with the absolute devia-
tion loss function. The third model has 15,000 estimators and
a combination of two prior loss functions. Table 2 compares
the performance of three distinct GB regressor model and
its ensemble. Compared to a single GB regressor model, the
ensemble model improves all the accuracy metrics resulting
in 2% less MAPE and about as half RMSE. The ensemble
model improves generality by combining multiple models
that may be over-fitted, and this results in better perfor-
mance in the prediction of various MM tasks latency.

6.2.4 Evaluation with Diverse Cloud Computing Instance
Types
To present the applicability of the proposed MPEC al-
gorithm on various cloud computing instance types, we
built a model with training datasets from MM task scenar-
ios that involve five instance types (M4.4xlarge, C4.8xlarge,
R4.2xlarge, I3.2xlarge, and D2.2xlarge). Figure 13 shows the
prediction accuracy of the MPEC model. In each evaluation
metric, we show the test results across all instance types (all)
followed by test results of each instance type. In the model
accuracy evaluation, 10-fold cross-validation is performed
100 times by exclusively splitting training datasets. The
value in the vertical axis is the normalized one based on the
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Fig. 14: The predicted latency of various algorithms with a
fixed matrix size by varying a number of worker nodes

value across all instance types (all). Regardless of instance
types, it shows decent prediction accuracy; the R2 accuracy
metric is greater than 0.98 and the MAPE is lower than 10%.

6.3 Evaluation of the Predictor on a Scale-out Environ-
ment

In this section, we evaluate the accuracy of the predictor
on a scale-out environment as we vary the number of
worker nodes. The predictor uses an MM performance
estimator model built with training datasets generated
from four Spark worker nodes. Figure 14 shows the pre-
dicted and true latency from the module. Here, each graph
shows the latency of different MM task scenarios, i.e., (LR,
LC, RC) of (31800, 31800, 31800), (146, 7000000, 146), and
(146, 146, 7000000). With the fixed matrix size, we vary the
number of worker nodes (4, 9, 16, and 25), as shown on
the horizontal axis. We include a linear scaler with a penalty
term for comparison. The linear scaler references the latency
predicted by the MPEC MM performance estimator con-
structed with four worker nodes, i.e., T4, and estimates the
latency by using Equation 6. Here, the α, which represents
scaling overheads, ranged from 0.0 - 1.0.

TWprd
= T4 ×

4

Wprd × α
(6)

As shown in Figure 14, MPEC’s scale-out predictor pro-
vides consistently good prediction accuracy. Here, the star
indicates the latency predicted using MPEC, and the bar
indicates the true latency. Circles and triangles show the
expected latency from a linear scaler predictor with an α
value of 0.7 and 1.0, respectively. The linear scaler predictor
sometimes predicts well; however, we could not find a linear
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Fig. 15: Latency prediction as the number of worker nodes
increases with a fixed block size

scaler model that works well across all the test cases, e.g.,
α = 0.7 shows better performance for (146, 7000000, 146),
and (146, 146, 7000000), while α = 1.0 shows better perfor-
mance for (31800, 31800, 31800).

Figure 15 shows the predicted MM task latency with dif-
ferent numbers of worker nodes. Different from experiments
from Figure 14, here, we fix the block size and increase the
number of blocks according to the number of workers. Thus,
the total size of input matrices become larger as the number
of worker nodes increase. Each bar in the figure shows the
true latency, and the left-most four bars show the latency of a
square block matrix (15000, 15000). The next four bars show
the experimental results when the number of columns of a
right matrix (4000000) was much larger than the number of
rows of left and right columns of the matrix (64). The last
four bars show the results when the number of rows of left
and right columns the matrix (18000) are larger than the
number of columns in the left matrix (64). We normalized
each value to the latency when the number of worker nodes
was four and the value predicted by MPEC is indicated with
a star. The true value is shown by the bars. The proposed
MPEC shown provides consistently accurate predictions.
The average MAPE of the experiments (including cases not
shown) was 8%.

6.4 Efficiency of Train Dataset Generation
We evaluated the efficiency of an MM task scenario genera-
tion mechanism using the LHS algorithm. To quantitatively
demonstrate the efficiency of applying the LHS algorithm,
we compare three different methods, i.e., Random, Grid, and
Expert-pick. Here, the Random and Grid algorithms generate
240 test datasets comprising sets of triple rational numbers
ranging from 0.0 to 1.0 that are multiplied by represen-
tative MM task scenarios ((H-L-L), (L-H-L), (L-L-H), (M-
L-M), (M-M-L), (L-M-M), and square × square MM). The
Random method generates random triple values, and the
Grid method divides the LR and RC into three regions
(0.25, 0.5, and 0.75) and LC into four regions (0.125, 0.375,
0.625, and 0.875), and then permutes the values, generat-
ing 240 test datasets. In the Expert-pick method, a linear
algebra expert from the authors’ institution suggested 236
cases of MM task scenarios that are executable in a Spark
environment. The expert recommended a diverse range of
scenarios. To reproduce the outcomes of the experiments,

MPEC Grid
R2 Score

Ran Exp MPEC Grid
RMSE

Ran Exp MPEC Grid
MAPE (%)

Ran Exp

prediction accuracy

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

no
rm

al
ize

d 
va

lu
e

0.997 1951.3 7.180.979

5683.8

23.1

0.976

6007.3
20.67

0.989

4108.8

18.93

MPEC
grid sampling
random sampling
expert-pick
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Fig. 17: Effectiveness of D-optimal algorithm to reduce over-
head when generating training datasets

the experiment scenarios of Random, Grid, Expert-pick, the
proposed method in this paper, and the test datasets have
been published online6.

We use the differently generated training datasets from a
Spark cluster of four AWS EC2 R4.2xlarge instances to build
a model using the GB regressor. The prediction accuracy
of distinct training datasets is shown in Figure 16. The
vertical axis shows the normalized value to that of the
proposed method which shows the best accuracy across
all metrics. The four left-most bars show the R2 accuracy
of the proposed method, random, grid, and expert-pick
methods (higher values are better). The proposed method
shows slightly better values than the other methods. The
next four bars show the RMSE and MAPE values (lower
values are better). Similar to R2, the proposed method
demonstrates the least errors compared to other heuristics.
The experimental results show that using a heuristic to
generate complex MM task experiment scenarios improves
the prediction accuracy without complex model tuning.

Figure 17 shows the effectiveness of applying the D-
optimal algorithm relative to reducing the overheads of
running many experiments without sacrificing model ac-
curacy. Recall that implementing the Fedorov D-optimal
algorithm may suggest different sets of experimental cases;
thus, we repeat the tests 100 times and show the average
value. This experiment is conducted with training datasets
generated only from R4.2xlarge instance type. Figure 17a
shows the amount of information changes (primary vertical
axis) as we add more experimental cases (horizontal axis)
in the solid line. The information value is measured with

6. http://bit.ly/2IRcLeN
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the metric of the determinant of the normalized dispersion
matrix which directly impacts the variance error term of
a model. As we continue to add more training datasets,
the amount of variance error decreases. To demonstrate
the pattern of information improvement as more training
datasets are added, we show the delta of the improvement
in the gray bar (the value is given in the secondary vertical
axis). Overall, the delta value is greater when the number of
training datasets is smaller (left part of the x-axis), and the
delta becomes smaller as more training datasets (right part
of the x-axis) are added. It can be explained qualitatively
that, as we expand the training datasets, it becomes more
likely that similar data points will be added. Thus, the infor-
mation gained is not as much as we would expect when the
number of training datasets is small. The experimental re-
sults indicate that the proposed algorithm should terminate
the experiment after obtaining 144 training datasets out of
a total of 240 complete datasets. To measure model quality,
we show the R2 and RMSE values with different numbers
of training datasets in Figures 17b and 17c, respectively. We
omit MAPE as it shows a similar pattern with RMSE. As we
add more training datasets, the overall accuracy increases.
However, the amount of improvement is reduced beyond
144 training datasets (a vertical solid line).

6.5 Effective Experiment Scenario Generation for Di-
verse Instance Types

In Section 6.4, we presented the effectiveness of the pro-
posed DoE algorithm of MPEC when selecting various MM
task scenarios from a single instance type. We further eval-
uated the effectiveness of the proposed algorithm with vari-
ous instance types. Figure 18 shows the R2 (Figure 18a) and
RMSE value (Figure 18b) when applying the DoE algorithm
when selecting an optimal experimental scenario from 1, 200
cases generated from five different instance types. Interest-
ingly, the maximum accuracy reached only 120 experiment
cases out of the 1, 200. Compared to a single instance type
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Fig. 20: Comparison of the proposed method with Ernest

case (Figure 17) that showed the maximum accuracy with
a similar number of experiments, the intelligent selection of
experimental cases significantly improved the efficiency of
the system by incurring comparable overheads with a single
instance type predictor while providing accurate prediction
for multiple instance types. To further evaluate how the pro-
posed DoE algorithm selects optimal 120 experiment cases,
we show the distribution of EC2 instance types (Figure 19a)
and MM task sizes (Figure 19b) in Figure 19a. We could
see that different instance types were selected quite evenly.
To determine matrix size, we divide MM tasks based on
the number of multiplication operations and grouped them
into three categories. Deeper analysis reveals that different
MM task scenarios are covered in the different instance
types, and it could compensate missing MM task scenario
latency from other related experimental result; for example,
a missing MM task scenario can be inferred from the results
of other instance types.

6.6 Comparing MPEC to State of the Art System

To show the efficiency of the proposed system, we com-
pare MPEC with Ernest [7], a recently created performance
prediction system for general machine learning algorithms.
It is composed of the experiment design and performance
prediction components. In the experimental design step,
Ernest constructs test cases using a small fraction of a
sampled dataset and a distinct number of machines to run
the experiments. In the prediction step, Ernest uses a non-
negative linear regressor with training datasets gathered
from the experiments. Please note that the native Ernest
algorithm does not support a sampling scenario for MM
tasks, and we suggest two sampling mechanisms based on
the number of elements and the multiplication overheads.
The prior approach considers the total number of elements
in the left and right matrices of size LR×LC and RC×LC
as a target metric to scale. The multiplication overhead
sampling mechanism scales the total number of multipli-
cation operation of an MM task (LR × LC × RC). In both
approaches, we multiply the fraction suggested by Ernest to
the target metric (total number of elements or multiplication
operations).
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Figure 20 shows the comparison between Ernest and the
proposed MM performance prediction in the case where the
number of Spark worker nodes is same for both training
and prediction (four workers). On the horizontal axis, we
show different matrix shapes. On the vertical axis, we show
the true measured latency, the predicted latency of MPEC,
the Ernest-Element, and Ernest-Multiply. Regardless of the
sampling mechanism, Ernest prediction models show poor
accuracy compared to the proposed method, except for the
(32000,32000,32000) workload. On average, the prediction
accuracy (with the metric of RMSE) of the proposed method
is better than that of the Ernest-Element and Ernest-Multiply
by 91% and 96%, respectively.
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Fig. 21: Comparing MPEC with Ernest with various MM
task sizes

In the next experiment, we compare Ernest with a scale-
out performance predictor module where the number of
Spark worker nodes is different for training (four workers)
and prediction (25 workers). We select various MM task
scenarios whose matrix size is available for execution with
25 R4.2xlarge EC2 instances. The selected MM task sce-
narios are (75000, 75000, 75000), (20000000, 320, 320), and
(90000, 320, 90000). In the experimental design step of
Ernest, we used up to nine machines and the fraction
of the datasets suggested in the literature [29] for each
scenario. For the Ernest sampling mechanism, we use a
multiplication-based mechanism as it shows better perfor-
mance.

Figure 21 shows the true latency (left upward diagonal
line), the latency predicted by MPEC (gray bar with no
pattern) and Ernest (right upward diagonal line). Here,
the latency value is shown at the top of each bar in
milliseconds. As can be seen, the proposed MPEC out-
performs Ernest regardless of the MM task scenarios. Al-
though (90000, 320, 900000) shows a slightly higher error
rate, the MAPE of the proposed MPEC is less than 11%,
while that of Ernest is approximately 20%. On average, the
prediction accuracy (RMSE) of MPEC is better than that of
Ernest by 190% for all test cases. In addition to the poorer
prediction accuracy of Ernest, with respect to reusing the
experimental results of MM tasks, Ernest is limited because
its experiment design involves scaling down the (LR, LC,
RC) precisely by the fraction and number of machines,

while the proposed MPEC approach can reuse experimental
results to predict the latency of arbitrary shapes and sizes
of MM tasks. Furthermore, the Ernest does not support
performance prediction across different instance types, and
a same set of experiments should be conducted for different
instance types.

7 RELATED WORK

Big data workload performance estimation on cloud: To
analyze large-scale datasets, a MapReduce programming
model [30] is widely used to express complex data-oriented
operations. Hadoop [1] and Spark [2] are popular plat-
forms that implement the MapReduce programming model.
Deploying such big-data analytic environments via cloud
computing resources is becoming the norm, and researchers
are investigating how to provide optimal cloud comput-
ing environments to run Hadoop and Spark. To find the
optimal Hadoop environment on cloud, StarFish [31] finds
optimal configurations for Hadoop tasks. Its core compo-
nent includes profiler and what-if analysis modules that
understand the characteristics of the Hadoop tasks and find
a better configuration. The StartFish algorithm is specific
to an instance type, and it is not generally applicable to
other various instance types as our proposed work does.
Bazaar [32] and Conductor [33] find optimal instance types
and pricing options including spot instances [34] by apply-
ing input sampling for Hadoop. Though they present good
accuracy in the prediction, the applications they use in the
evaluation are fairly simple, such as wordcount, sorting,
tf-idf. As presented in Section 6.6, capturing the complex
characteristics of MM tasks using a sampling method is very
challenging. Different from other approaches, MRPerf [35] is
a simulator for Hadoop frameworks that focuses mainly on
data locality and network topology simulations. Simulations
are beneficial as they reduce offline experimental overheads
significantly, but the model does not support simulation of
various cloud computing resource features.

To address challenges in cloud computing resource se-
lection when using Spark, PARIS [9] employs offline profil-
ing and online prediction. In offline profiling, PARIS runs
target applications with scale-based sample datasets while
measuring hardware provided metrics, such as CPU and
memory utilization. Based on these usage metrics, PARIS
applies the Random Forest (RF) algorithm to make a pre-
diction. Cherrypick [8] uses Bayesian optimization to select
the next instance type to run experiments and suggest the
most appropriate instance type among the tested instances.
Ernest [7] applies the NNLS equation to model interactions
among different hardware configurations with profiled ex-
periment results from scale-based sample datasets. Such
approaches rely on the scale-based sampling approach to
reduce the overheads incurred by the entire datasets. How-
ever, the approach reruns tests for different datasets and
the experimental results from previous runs are generally
not reusable. In addition, these previous studies focused
on predicting the response time to execute high-level ma-
chine learning algorithms; thus, they could not capture the
complex characteristics of MM tasks. In the optimal cloud
environment recommendation, CAST [36] and Selecta [37]
focused on various cloud storage service options. They
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provide good accuracy in the prediction, but the target
applications in the evaluation are limited to simple ones,
such as sort, join, grep, and SQL workloads.

FiM [38] and Mariani et al. [39] employ an algorithm
to predict the latency of running HPC applications using
machine learning algorithms. They also rely on the profiling
of HPC applications using a scale-based sampling method
to gather various metrics for different cloud computing
resources, and it applies the RF algorithm to discover the
correlation between HPC applications and cloud resources.
Differing from such previous studies, the proposed method
uses unit blocks to predict MM task performance by syn-
thetically creating an MM task where the offline profiling
experiments are performed, and it enables the utilization of
previous experimental results of any kind to improve model
accuracy.

Vicent Sanz et al. [40] presented a mixtures-of-experts
approach to model the memory behavior of Spark appli-
cations. This system utilizes several distinct models that
are constructed offline, and an expert selector using a K-
Nearest Neighbor classifier determines which model should
be invoked based on the run-time information (CPU and
memory) of an application. Although it covers a wide range
of Spark application domains, its training cost can be pro-
hibitive for MM tasks that cover a broad range of scenarios.

Differing from previously mentioned works, Dione [41]
attempted to predict the execution time of various data min-
ing jobs by referencing an execution DAG graph provided
by Apache Spark. After grouping similar DAG execution
graphs, the authors could predict the execution time of
unseen tasks with minimal training overheads. Note that
they did not consider the scale-out environments, and the
proposed algorithm is not directly applicable if the number
of worker nodes changes. As presented in this paper, differ-
ent applications can have different scaling patterns, which
may result in poor prediction accuracy.

Optimizing distributed matrix multiplication on cloud:
MM is an essential task in machine learning jobs with
large-scale datasets. Due to the importance of the tasks
and the ever-increasing sizes of datasets, many studies have
focused on optimizing the task in a distributed cloud com-
puting environment. Yu et al. [42] thoroughly investigates
the communication overheads of various distributed MM
shapes and proposes a task execution plan to minimize
the communication cost. Marlin [43] proposes a distributed
MM algorithm on Spark to minimize the shuffle overheads.
As discussed quantitatively in this study, shuffle overheads
are crucial for determining the performance of distributed
MM tasks; however, other than the shuffle overhead, the
output matrix size and total number of products also impose
a significant impact on the overall task completion time.
The MM task optimization works are complementary to
the proposed MPEC system; the optimization of MM per-
formance is specific to an instance type, while finding the
optimal instance type for a given MM workload is across
many instance types, and the algorithms can be improved
independently.

Methods of choosing optimal experiment scenarios:
In the field of system performance prediction on cloud
resources, offline profiling experiments are conducted to
generate the inputs for the training model. Because the gen-

erated training dataset can be prohibitive, several previous
studies adopted DoE [13] to determine optimal scenarios
for offline experiments. Mariani et al. [39] use the central
composite DoE algorithm to determine an application’s
parameters by minimizing the uncertainty of a nonlinear
polynomial model considering the interactions among pa-
rameters. Ernest [7] uses the A-optimal DoE algorithm to
maximize the traces of an information matrix to select the
number of machines and a fraction of input datasets to test
in the offline profiling step. Packing Light [44] employs
a response surface design that helps to understand and
optimize how the query workload responds to changing
hardware configurations. Packing Light also employs LHS
to take random samples. The algorithm proposed in this pa-
per is unique because it uses the LHS algorithm to generate
a comprehensive set of MM task scenarios and it uses the
D-optimal algorithm to select a subset of optimal test cases
to reduce the cost of offline experimental tests.

8 CONCLUSION AND FUTURE WORK

With the rapid development of cloud computing services,
big-data application developers have many options when
deploying execution engines. To build a cost-efficient big-
data analytics platform using various cloud computing in-
stance types, we have proposed MPEC to accurately esti-
mate the latency of MM tasks of various shapes and sizes,
which is a core computational kernel of many machine
learning algorithms. We first characterize the overheads
of distributed MM and propose 16 features that represent
various MM task scenarios and diverse hardware specifi-
cations. We then leverage a reusable algorithm to predict
the latency of MM tasks of various shapes and sizes with
different numbers of worker nodes and instance types.
For optimal generation of training datasets, we propose an
intelligent way to design experimental scenarios to reduce
overheads incurred by running multiple experiments to
generate training datasets. Thorough experimental results
reveal important features that determine the overall latency
of distributed MM tasks, and the proposed MM latency es-
timation algorithm on scale-out environments consistently
provide accurate prediction. Furthermore, the proposed
MPEC outperforms a state-of-the-art machine learning per-
formance predictor, Ernest, with 190% less prediction error
(relative to RMSE).

The proposed MPEC system has rooms for improve-
ment. The current version assumes that a cluster is com-
posed homogeneously with the same instance type, but a
cluster can be configured heterogeneously for efficiency. No
prior works had yet investigated the performance estima-
tion and optimization of heterogeneous Spark environment
on the cloud. We mainly focused on the prediction of
block-based matrix partitioning because it shows the best
performance and is generally applicable. Our investigation
of the prediction of other matrix partitioning mechanisms
is on-going. On cloud, there are many pricing options that
users can choose. Among the price options, using oppor-
tunistic resources at cheaper price [34], [45] for distributed
MM tasks and machine learning jobs can result in different
observation.
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