
Accelerator-Aware Kubernetes Scheduler
for DNN Tasks on Edge Computing Environment
Jungae Park

Kookmin University
Seoul, Korea

barkjungae@kookmin.ac.kr

Unho Choi
Kookmin University

Seoul, Korea
yms04089@kookmin.ac.kr

Seungwoo Kum
Korea Electronics Technology Institute

Seoul, Korea
swkum@keti.re.kr

Jaewon Moon
Korea Electronics Technology Institute

Seoul, Korea
jwmoon@keti.re.kr

Kyungyong Lee
Kookmin University

Seoul, Korea
leeky@kookmin.ac.kr

ABSTRACT
The compute capability of edge devices is expanding owing to the
wide adoption of edge computing for various application scenarios
and specialized hardware explicitly developed for an edge environ-
ment. A container orchestration platform, Kubernetes is widely
used to maintain edge computing resources efficiently, but it suf-
fers from a limited scheduling capacity. We present a design and
implementation of an accelerator information extraction module to
improve the scheduling capability of a standard Kubernetes imple-
mentation by providing rich hardware information. Furthermore,
we present a plausible advancement of the Kubernetes scheduler
by considering detailed workload characteristics and attached spe-
cialized accelerator hardware information.

CCS CONCEPTS
•Computer systems organization→Distributed architectures.

KEYWORDS
edge computing, accelerator, scheduler, Kubernetes
ACM Reference Format:
Jungae Park, Unho Choi, Seungwoo Kum, Jaewon Moon, and Kyungyong
Lee. 2021. Accelerator-Aware Kubernetes Scheduler for DNN Tasks on
Edge Computing Environment. In The Sixth ACM/IEEE Symposium on Edge
Computing (SEC ’21), December 14–17, 2021, San Jose, CA, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3453142.3491411

1 BACKGROUND AND MOTIVATION
Edge computing is a distributed computing system that brings
dataset computation to a location closer to the data source. Edge
computing improves response time and saves bandwidth by avoid-
ing the transfer of datasets to a remote cloud environment. Com-
pared to ordinary public cloud computing, where a service vendor is
responsible for maintaining compute resources, an edge computing
environment is decentralized, and edge resources can be unstable

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SEC ’21, December 14–17, 2021, San Jose, CA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8390-5/21/12.
https://doi.org/10.1145/3453142.3491411

compared to centralized cloud computing resources. Thus, it can
be challenging to maintain edge computing resources and schedule
jobs reliably. Kubernetes [3] is a container orchestration platform
that provides a highly available container execution environment
while providing fault-tolerance and auto-scaling on top of Linux
container (LXC) technology [5]. Because Kubernetes can maintain
resources and containers in a fault-tolerant way, managing rela-
tively unstable edge computing resources is well-suited.

Edge computing allows running compute-intensive tasks near
data sources, and it can meet geographical regulations and lessen
security concerns. Savi et. al. [7] proposed a blockchain-based edge
computing resource brokerage platform that extends Kubernetes.
The proposed system schedules compute-intensive Deep Neural
Network (DNN) tasks to a pool of remotely located edge resources to
meet a geographical constraint. Using Kubernetes as an underlying
container orchestration platform reduces resource management
overhead while providing limited scheduling capabilities. In the
vanilla Kubernetes distribution, the default kube-scheduler relies on
user-defined job requirements and simple worker node hardware
characteristics, and it becomes users’ responsibility to provide rich
hardware information and build an optimal scheduler on an edge
environment for diverse tasks.

Reza et. al. [4] thoroughly evaluated the inference performance
of three different DNNmodels (MobileNetV1, MobileNetV2 [6], and
InceptionV3 [8]) on edge devices with diverse accelerators, such
as NVIDIA Jetson TX2, NVIDIA Jetson Nano, and Google Edge
Tensor Processing Unit (TPU). The researchers discovered that no
single edge-accelerator device could provide optimal performance
for all models. Google Edge TPU performs best for smaller mod-
els (MobileNetV1 and MobileNetV2), while NVIDIA Jetson Nano
performs best for larger models (InceptionV3). Furthermore, the
authors discovered that the host to accelerator device interface
could significantly impact the inference performance especially for
Google Edge TPU. Other than the DNN inference, the federated
learning [1], which trains a DNN model using various edge devices
with the accelerator, can show performance diversity.

It is crucial to reference complex relationships between workload
and hardware characteristics to enhance scheduling quality, but it is
barely supported in the current Kubernetes distribution. To improve
the scheduling capability of Kubernetes, we present an accelerator
discovery extension module for Kubernetes on edge computing
environment with its implementation detail. Using the accelerator

https://doi.org/10.1145/3453142.3491411
https://doi.org/10.1145/3453142.3491411

SEC ’21, December 14–17, 2021, San Jose, CA, USA Jungae Park, Unho Choi, Seungwoo Kum, Jaewon Moon, and Kyungyong Lee

Hardware-specific information

Proposed module

Hardware
Monitor

Workload 
Characteristic 

Analysis

Plain Kubernetes Cluster
Worker

. . .

Master

node 
Selector

YAML

pod-containernode

node pod-container

shed

Filtering

Scoring

Permit

Figure 1: Kubernetes scheduler and the proposed extension
module to enhance scheduling capacity

hardware information, we envision the possibility of enhancing the
Kubernetes scheduler by referencing workload characteristics and
accelerator detail while making a scheduling decision.

2 SYSTEM DESIGN AND IMPLEMENTATION
Using a rich set of information regarding workload and hardware
characteristics can enhance the capability of the Kubernetes sched-
uler. Figure 1 presents an architecture of plain Kubernetes scheduler
with a proposed extension module. The vanilla Kubernetes sched-
uler, which is shown in the right part of Figure 1, relies on limited
resource information, such as available CPU cores and memory,
and pod-to-node matchmaking happens based on label matching re-
quirement manually specified by end-users and the internal ranking
mechanism provided by Kubernetes. To enhance the scheduler ca-
pability, we propose to add a hardware monitor module that collects
detailed and timely worker nodes’ hardware information, including
edge-accelerator devices. We propose adding a workload character
analysis module that analyzes users’ submitted tasks and extracts
core components to execute a task to reflect the workload detail.
The workload analyzer needs to consider various workload scenar-
ios, such as DNN inference or training with different models and
datasets and should be able to model characteristics of workloads
on arbitrary accelerator hardware. The detailed hardware informa-
tion and workload analysis results become input to a Kubernetes
scheduler to enhance scheduling quality.

The automatic accelerator hardware and information extraction
module for Kubernetes have been completed, and the workload
analysis module is currently being developed. Figure 2 presents
the implementation detail of accelerator information extraction
module. The module aims to provide details of accelerator hardware
attached to an edge device to help the Kubernetes scheduler make
an informed decision. The prototype implementation is built with
five representative edge-accelerator devices, NVIDIA Jetson TX1,
TX2, Nano, Xavier, and Google Edge TPU hosted by Raspberry PI.
We built a container image that can extract detailed accelerator
information, and we made the image publicly available12. To detect
NVIDIA Jetson devices, we reference /proc file system of a host

1https://hub.docker.com/repository/docker/kmubigdata/edge-accelerator-monitor
2https://github.com/kmu-bigdata/edge-accelerator-monitor

Master

DaemonSet

Kubernetes cluster
1

4

Accelerator Detector  
Container Image

5

2

Node3Node1 Node2
Worker Pools

3

Controller

Label

key : value 
(node : data)

kind: DaemonSet
spec:

selector:
matchLabels:

name: worker
spec:

containers:
-name: container  
image: edge-accelerator-monitor

YAML

pod-container

node

pod-container pod-container

Node4

pod-container

Node5

pod-container

3

node

etcd

Figure 2: The implementation of accelerator hardware infor-
mation extraction module

machine. To detect the Google Edge TPU device, we use the lsusb
system command.

A worker node should start a pod that runs the accelerator de-
tector container and report hardware detail to a master node. The
update period is determined based on the characteristics of reported
metrics, which are either static or dynamic. To automatically start
a pod with a designated container when a node joins a cluster, we
use Kubernetes DaemonSet feature. After a master node receives
worker nodes’ accelerator information, it records the received in-
formation using KubernetesLabel so that it can be easily integrated
with the original Kubernetes scheduler.

3 DISCUSSION
A resource scheduler can make an informed decision using detailed
accelerator information. It becomes advantageous for DNN work-
loads that exhibit varying performance for accelerator devices, [4].
In amarket edge federation system [7], providing hardware capacity
is crucial for buyers and sellers to interact appropriately.

To support a workload-aware edge computing scheduler using
Kubernetes, the performance prediction of diverse DNN workloads
on edge devices is crucial. Paleo [2] provided an algorithm to predict
various DNN model training times on different GPU devices, and
Mark [9] proposed a cost-efficient DNN inference system using
multiple cloud services. However, most relevant prior work did not
consider using edge computing resources with accelerators. Further
research should be conducted to characterize the performance of
various DNN workloads executed on edge devices.

The current version of the accelerator-detector module requires
a manual implementation to extract characteristics of distinct hard-
ware devices. This may limit the system’s applicability for a newly
released accelerator device, and generalizing diverse accelerator
characteristics is required to improve the system’s practicability.

ACKNOWLEDGMENTS
This work is supported by the Institute of Information Communi-
cations Technology Planning Evaluation (IITP) grant funded by
the Korea Government (MSIT) (No. 2021-0-01578) and the National
Research Foundation of Korea (NRF) (Nos. NRF-2020R1A2C1102544
and NRF-2015R1A5A7037615)

Accelerator-Aware Kubernetes Scheduler
for DNN Tasks on Edge Computing Environment SEC ’21, December 14–17, 2021, San Jose, CA, USA

REFERENCES
[1] Kallista A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi,
H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at Scale: System Design.
CoRR abs/1902.01046 (2019). arXiv:1902.01046 http://arxiv.org/abs/1902.01046

[2] Hang Qi, Evan R. Sparks, and Ameet Talwalkar. 2017. Paleo: A Performance
Model for Deep Neural Networks. In Proceedings of the International Conference
on Learning Representations.

[3] David K. Rensin. 2015. Kubernetes - Scheduling the Future at Cloud Scale. 1005
Gravenstein Highway North Sebastopol, CA 95472. All pages. http://www.oreilly.
com/webops-perf/free/kubernetes.csp

[4] Sheikh Rufsan Reza, Yuzhong Yan, Xishuang Dong, and Lijun Qian. 2021. Inference
Performance Comparison of Convolutional Neural Networks on Edge Devices.
In Science and Technologies for Smart Cities, Sara Paiva, Sérgio Ivan Lopes, Rafik
Zitouni, Nishu Gupta, Sérgio F. Lopes, and Takuro Yonezawa (Eds.). Springer
International Publishing, Cham, 323–335.

[5] Rami Rosen. 2014. Linux containers and the future cloud. Linux J 240, 4 (2014),
86–95.

[6] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4510–4520.
https://doi.org/10.1109/CVPR.2018.00474

[7] Marco Savi, Daniele Santoro, Katarzyna Di Meo, Daniele Pizzolli, Miguel Pincheira,
Raffaele Giaffreda, Silvio Cretti, Seung-woo Kum, and Domenico Siracusa. 2020. A
Blockchain-based Brokerage Platform for Fog Computing Resource Federation. In
2020 23rd Conference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN). 147–149. https://doi.org/10.1109/ICIN48450.2020.9059337

[8] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2015. Rethinking the Inception Architecture for Computer Vision.
CoRR abs/1512.00567 (2015). arXiv:1512.00567 http://arxiv.org/abs/1512.00567

[9] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. MArk: Exploit-
ing Cloud Services for Cost-Effective, SLO-Aware Machine Learning Inference
Serving. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX
Association, Renton, WA, 1049–1062. https://www.usenix.org/conference/atc19/
presentation/zhang-chengliang

http://arxiv.org/abs/1902.01046
http://www.oreilly.com/webops-perf/free/kubernetes.csp
http://www.oreilly.com/webops-perf/free/kubernetes.csp
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/ICIN48450.2020.9059337
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang

	Abstract
	1 Background and Motivation
	2 System Design and Implementation
	3 Discussion
	Acknowledgments
	References

