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ABSTRACT
The compute capability of edge devices is expanding owing to the
wide adoption of edge computing for various application scenarios
and specialized hardware explicitly developed for an edge environ-
ment. A container orchestration platform, Kubernetes is widely
used to maintain edge computing resources efficiently, but it suf-
fers from a limited scheduling capacity. We present a design and
implementation of an accelerator information extraction module to
improve the scheduling capability of a standard Kubernetes imple-
mentation by providing rich hardware information. Furthermore,
we present a plausible advancement of the Kubernetes scheduler
by considering detailed workload characteristics and attached spe-
cialized accelerator hardware information.
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1 BACKGROUND AND MOTIVATION
Edge computing is a distributed computing system that brings
dataset computation to a location closer to the data source. Edge
computing improves response time and saves bandwidth by avoid-
ing the transfer of datasets to a remote cloud environment. Com-
pared to ordinary public cloud computing, where a service vendor is
responsible for maintaining compute resources, an edge computing
environment is decentralized, and edge resources can be unstable
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compared to centralized cloud computing resources. Thus, it can
be challenging to maintain edge computing resources and schedule
jobs reliably. Kubernetes [3] is a container orchestration platform
that provides a highly available container execution environment
while providing fault-tolerance and auto-scaling on top of Linux
container (LXC) technology [5]. Because Kubernetes can maintain
resources and containers in a fault-tolerant way, managing rela-
tively unstable edge computing resources is well-suited.

Edge computing allows running compute-intensive tasks near
data sources, and it can meet geographical regulations and lessen
security concerns. Savi et. al. [7] proposed a blockchain-based edge
computing resource brokerage platform that extends Kubernetes.
The proposed system schedules compute-intensive Deep Neural
Network (DNN) tasks to a pool of remotely located edge resources to
meet a geographical constraint. Using Kubernetes as an underlying
container orchestration platform reduces resource management
overhead while providing limited scheduling capabilities. In the
vanilla Kubernetes distribution, the default kube-scheduler relies on
user-defined job requirements and simple worker node hardware
characteristics, and it becomes users’ responsibility to provide rich
hardware information and build an optimal scheduler on an edge
environment for diverse tasks.

Reza et. al. [4] thoroughly evaluated the inference performance
of three different DNNmodels (MobileNetV1, MobileNetV2 [6], and
InceptionV3 [8]) on edge devices with diverse accelerators, such
as NVIDIA Jetson TX2, NVIDIA Jetson Nano, and Google Edge
Tensor Processing Unit (TPU). The researchers discovered that no
single edge-accelerator device could provide optimal performance
for all models. Google Edge TPU performs best for smaller mod-
els (MobileNetV1 and MobileNetV2), while NVIDIA Jetson Nano
performs best for larger models (InceptionV3). Furthermore, the
authors discovered that the host to accelerator device interface
could significantly impact the inference performance especially for
Google Edge TPU. Other than the DNN inference, the federated
learning [1], which trains a DNN model using various edge devices
with the accelerator, can show performance diversity.

It is crucial to reference complex relationships between workload
and hardware characteristics to enhance scheduling quality, but it is
barely supported in the current Kubernetes distribution. To improve
the scheduling capability of Kubernetes, we present an accelerator
discovery extension module for Kubernetes on edge computing
environment with its implementation detail. Using the accelerator
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Figure 1: Kubernetes scheduler and the proposed extension
module to enhance scheduling capacity

hardware information, we envision the possibility of enhancing the
Kubernetes scheduler by referencing workload characteristics and
accelerator detail while making a scheduling decision.

2 SYSTEM DESIGN AND IMPLEMENTATION
Using a rich set of information regarding workload and hardware
characteristics can enhance the capability of the Kubernetes sched-
uler. Figure 1 presents an architecture of plain Kubernetes scheduler
with a proposed extension module. The vanilla Kubernetes sched-
uler, which is shown in the right part of Figure 1, relies on limited
resource information, such as available CPU cores and memory,
and pod-to-node matchmaking happens based on label matching re-
quirement manually specified by end-users and the internal ranking
mechanism provided by Kubernetes. To enhance the scheduler ca-
pability, we propose to add a hardware monitor module that collects
detailed and timely worker nodes’ hardware information, including
edge-accelerator devices. We propose adding a workload character
analysis module that analyzes users’ submitted tasks and extracts
core components to execute a task to reflect the workload detail.
The workload analyzer needs to consider various workload scenar-
ios, such as DNN inference or training with different models and
datasets and should be able to model characteristics of workloads
on arbitrary accelerator hardware. The detailed hardware informa-
tion and workload analysis results become input to a Kubernetes
scheduler to enhance scheduling quality.

The automatic accelerator hardware and information extraction
module for Kubernetes have been completed, and the workload
analysis module is currently being developed. Figure 2 presents
the implementation detail of accelerator information extraction
module. The module aims to provide details of accelerator hardware
attached to an edge device to help the Kubernetes scheduler make
an informed decision. The prototype implementation is built with
five representative edge-accelerator devices, NVIDIA Jetson TX1,
TX2, Nano, Xavier, and Google Edge TPU hosted by Raspberry PI.
We built a container image that can extract detailed accelerator
information, and we made the image publicly available12. To detect
NVIDIA Jetson devices, we reference /proc file system of a host

1https://hub.docker.com/repository/docker/kmubigdata/edge-accelerator-monitor
2https://github.com/kmu-bigdata/edge-accelerator-monitor
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Figure 2: The implementation of accelerator hardware infor-
mation extraction module

machine. To detect the Google Edge TPU device, we use the lsusb
system command.

A worker node should start a pod that runs the accelerator de-
tector container and report hardware detail to a master node. The
update period is determined based on the characteristics of reported
metrics, which are either static or dynamic. To automatically start
a pod with a designated container when a node joins a cluster, we
use Kubernetes DaemonSet feature. After a master node receives
worker nodes’ accelerator information, it records the received in-
formation using KubernetesLabel so that it can be easily integrated
with the original Kubernetes scheduler.

3 DISCUSSION
A resource scheduler can make an informed decision using detailed
accelerator information. It becomes advantageous for DNN work-
loads that exhibit varying performance for accelerator devices, [4].
In amarket edge federation system [7], providing hardware capacity
is crucial for buyers and sellers to interact appropriately.

To support a workload-aware edge computing scheduler using
Kubernetes, the performance prediction of diverse DNN workloads
on edge devices is crucial. Paleo [2] provided an algorithm to predict
various DNN model training times on different GPU devices, and
Mark [9] proposed a cost-efficient DNN inference system using
multiple cloud services. However, most relevant prior work did not
consider using edge computing resources with accelerators. Further
research should be conducted to characterize the performance of
various DNN workloads executed on edge devices.

The current version of the accelerator-detector module requires
a manual implementation to extract characteristics of distinct hard-
ware devices. This may limit the system’s applicability for a newly
released accelerator device, and generalizing diverse accelerator
characteristics is required to improve the system’s practicability.
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