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Abstract—Many real-world graph datasets can be represented using a sparse matrix format, and they are widely used for various
big-data applications. The multiplication of two sparse matrices (SPMM) is a major kernel for various machine learning algorithms
when using a sparsely expressed dataset. Apache Spark, a general-purpose big-data processing engine, includes the SPMM
operation in its linear algebra package. The default Spark SPMM implementation, however, always converts a right sparse matrix to a
dense format before performing multiplication, which can result in significant performance overhead for diverse SPMM scenarios. To
address a limitation of the current Spark implementation, we describe an SPMM implementation that keeps the right matrix in a
Compressed Sparse Column (CSC) format and propose an SPMM task latency prediction model based on a Deep Neural Network
(DNN) architecture. Using the SPMM latency prediction model, we implement an elastic SPMM implementation recommendation
service, which we name DoS (Dense or Sparse). The proposed DoS recommends an optimal SPMM implementation method of either
transforming a right matrix to a dense format or keeping it as a sparse format during the multiplication. Through evaluation of the
proposed system using a real-world graph reveals that the proposed service can improve the SPMM latency of default Spark
implementation by 2.2 times while shortening the overall execution time.

Index Terms—Sparse matrix multiplication, Spark optimization, Optimal SPMM recommendation
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1 INTRODUCTION

ANALYSIS of large-scale datasets provides meaningful
insights by uncovering hidden information from big

data. In the data analysis, various machine learning algo-
rithms are used for training a model on general big-data
processing platforms, such as Apache Spark [1]. Though
there exist various machine learning algorithms for different
purposes, the multiplication of two sparse matrices, SPMM,
is widely used as a core kernel operation [2], [3], [4], [5],
[6]. To help efficiently build a data mining algorithm using
big data, the linear algebra distributed matrix package [7] in
Apache Spark provides APIs for SPMM implementation.

The native support of SPMM in Apache Spark greatly
helps to implement various machine learning algorithms,
but it suffers from poor performance due to its relatively
simple implementation heuristic. The default implementa-
tion of Spark SPMM always transforms a right sparse matrix
into a dense format before multiplication while keeping
a left matrix in a sparse CSC format [8]. The advantage
of statically transforming a right sparse matrix to a dense
format before multiplication is its ease of implementation.
Furthermore, when the density of the right matrix is high,
which means that the right matrix has a large Number of
Non-Zero (NNZ) elements and a low sparsity, the trans-
formation to a dense format can improve SPMM execution
performance because the dense formation allows for con-
tiguous memory access during the computation. However,
if the density of a right matrix is low, the overhead from the
transformation can overwhelm the multiplication overhead.
The performance variance is well represented in Figure 3.
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In order to provide an optimal SPMM implementation
in a general purpose big-data processing platform, Apache
Spark, we propose DoS, which stands for Dense or Sparse.
In DoS, we first examine the performance variation of two
SPMM implementations, transforming the right matrix to
a dense format or keeping the right matrix in a sparse
CSC format, with varying right matrix densities. We dis-
covered cases where keeping a right matrix in a sparse
format results in the better performance than transforming
a right matrix to a dense format when conducting SPMM
tasks. To be specific, as the sparsity of right matrix becomes
higher, keeping a right matrix in a sparse CSC format is
more advantageous. To take the performance advantage,
we describe an implementation of SPMM while keeping
a right matrix in a sparse CSC format. DoS proposes an
SPMM execution latency prediction model based on two
different implementation methods to recommend a better-
performing implementation method. To build a model to
predict SPMM execution latency, DoS first generates gen-
eral and practical SPMM scenarios synthetically by refer-
encing real-world graph datasets by applying Design-of-
Experiments (DoE) algorithms [9]. DoS uses a DNN archi-
tecture to model non-linear and complex interactions among
multiple input features to infer execution latency using the
generated training dataset. DoS recommends an optimal
implementation of SPMM based on the predicted latency,
taking into account the dimension and density of the input
matrices.

Through evaluation of DoS under practical experiment
scenarios proves the validity of the proposed prediction
model architectures and features. The evaluation using a
real-world graph dataset reveals that DoS has a superb
prediction accuracy of 93%. Using DoS’s recommended
SPMM implementation can reduce the SPMM execution
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time of the default Spark implementation, which always
converts a right matrix to a dense format, by 2.2 times
with negligible extra latency for prediction. The proposed
DoS recommendation algorithm and implementation are
publicly available, and the service is deployed, adopting a
serverless architecture [10].

The major contributions of this paper are as follows

• uncovering inefficiencies of the default SPMM imple-
mentation of Apache Spark

• characterization of diverse SPMM tasks and propos-
ing features to predict SPMM task latency

• proposing a synthetic training dataset generation
heuristic using a real-world graph dataset

• building SPMM tasks latency prediction model using
a DNN architecture

• implementing the optimal SPMM implementation
recommendation as a service to enhance training
latency of diverse machine learning jobs

2 BIG-DATA ANALYSIS USING SPMM
SPMM performs multiplication of two sparse matrices,
which we denote as L (left) and R (right), whose result is
C , i.e., L × R = C . To express the row and column index
of a matrix, we use the notation of i and j as a subscript,
respectively. For example, the value of the i-th row and j-th
column of a left matrix is expressed as Lij . A sparse matrix
is denoted by the number of rows, columns, and NNZs,
which are denoted as NR,NC , and NNZ , respectively. A
subscript is used to specify the values of a specific matrix.
For example, NRL means the number of rows for a left
matrix, and NNZR means the number of NNZs of a right
matrix. The dimension of a matrix multiplication task is
(NRL, NCL)× (NRR, NCR) = (NRL, NCR), where NCL

and NRR should be the same.
The SPMM is a major computation kernel for various

machine learning algorithms. The Multiple-Source Shortest
Path (MSSP) algorithm [5], [4] finds shortest paths from
multiple-source nodes to arbitrary destination nodes, which
are expressed using a graph data structure. Because of the
nature of sporadic connections among nodes in a real-world
graph dataset [11], a sparse matrix for data representation is
appropriate in the computation process. The sparse matrix
representation of an input dataset graph is denoted as L,
the left matrix in SPMM. With NRL number of nodes, a
square matrix of size NRL ×NRL is built, where a node i,
0 ≤ i ≤ NRL − 1, is assigned a row and column index of i.
An non-zero value of Lij implies connection from a node i
to j. To solve the MSSP problem of an input graph expressed
using a sparse matrix, L, using SPMM, we define a right
matrix, R, whose number of columns equals the number of
source nodes to find destinations. In the first iteration, each
source node is assigned a unique column to determine the
number of hops for various destinations, and the value in
the row index corresponding to the source node id is set
to 1. The multiplication of L and R yields a matrix of size
NRL×NCR, and NNZ elements in each column of a result
matrix represent the reachable nodes in the iteration from a
source node.

As another example of using matrix multiplication for
machine learning jobs, the dense matrix multiplication is
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Fig. 1: An example of a sparse matrix in a CSC format

a major computation kernel for various DNN implemen-
tations [12]. DeepCompression [13] was proposed using
pruning, quantization, and coding to reduce the model size
so that it could run on devices with limited capacity to
mitigate model management and computation overheads.
Weights in a DNN model become sparse owing to compres-
sion heuristics, and the dense matrix multiplication kernel
is replaced with the SPMM. Mofrad et al. [6] proposed an
optimization algorithm to conduct SPMM to train a sparse
DNN model. Many algorithms are proposed to expedite
Sparse DNN inference tasks [14], [15], [16]. The parallel
minimum spanning forest computation algorithm requires
sparse matrix multiplications [3].

Apache Spark [1] is a general-purpose big-data process-
ing engine that heavily relies on map and reduce primi-
tives [17] to simplify complex distributed processing and
programming. Compared to its predecessor MapReduce en-
gine, Hadoop [18], Spark provides a way to utilize memory
when necessary and outperforms Hadoop. In addition to
the core Map and Reduce APIs, Spark provides implementa-
tions of various machine learning algorithms through Spark
MLlib [19]. In the MLlib, distributed matrix computation
APIs are provided [7]. In the implementation, users can
decide how a matrix is stored in a distributed environ-
ment, block- or row-partitioned [20]. Users can also choose
whether a matrix is stored in a distributed sparse or dense
format. Users can save a sparse matrix in either coordinate
(COO) or CSC format [8]. The CSC format represents a
sparse matrix using three separate arrays, which store val-
ues, row indexes, and column pointers. Figure 1 shows an
example of sparse matrix and its CSC format representation.

The figure shows a 4 × 4 matrix whose NNZ is 7.
The values list is filled with non-zero matrix values in the
column-major order. The row indexes list represents a row
index of each value in the values list. The values in the
row indexes and values list match by the index number.
The column pointers list represents index numbers in the
values and row indexes list in each column sequentially. In a
zero-based index, a value in the ColumnPointers[j] is the
starting index and a value in the ColumnPointers[j + 1]
is the ending index of column j, which is referenced in
the values and row indexes list. We can make an infer-
ence how many entries exist in an arbitrary column j by
ColumnPointers[j + 1]− ColumnPointers[j].

The Spark MLlib distributed matrix library stores a
sparse matrix in a CSC format internally [20]. The library
supports SPMMs using the CSC format sparse matrix. How-
ever, before performing the multiplication, the right sparse
matrix must be transformed to a dense format. Algorithm 1
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Algorithm 1 SPMM(C = L×R) implementation of Spark

Input: Lvals, Lrow idxs, Lcol ptrs, Rvals

Output: Cvals

1: for Rcol idx = 0 to NCR do
2: rStart = Rcol idx ×NCL

3: cStart = Rcol idx ×NRL

4: for Lcol idx = 0 to NCL do
5: idxStart = Lcol ptrs[Lcol idx]
6: idxEnd = Lcol ptrs[Lcol idx + 1]
7: curR = Rvals[rStart+ Lcol idx]
8: for lV alIdx = idxStart to idxEnd do
9: cV alIdx = cStart+ Lrow idxs[lV alIdx]

10: Cvals[cV alIdx] += Lvals[lV alIdx]× curR
11: end for
12: end for
13: end for
14: return Cvals

explains the SPMM implementation of Apache Spark.
The input to the function is the left sparse matrix, L,

expressed in a CSC format with values, row indexes, and
column pointers, which are notated as Lvals, Lrow idxs, and
Lcol ptrs, respectively. Meanwhile, the right sparse matrix,
R, is transformed to a dense one-dimensional vector format
filled with values only, Rvals. The result from an SPMM
task is expressed in a dense format using a one-dimensional
vector and noted as Cvals. It iterates over the right matrix-
vector, Rvals, per column (Line 1) and calculates the cor-
responding index of the right and result matrices in each
column (Lines 2 and 3). It looks for the left matrix’s column
pointers list, Lcol ptrs, to determine the start and end col-
umn indexes (Lines 5 and 6). It stores the right matrix value
to be multiplied in a variable using the current column index
of the left matrix (Line 7). Iterating through the entries in a
column of the left matrix, it calculates the location where
the multiplication output is stored (Line 9) and multiplies
the values of the left and right matrices to add them in the
corresponding location in the result matrix (Line 10).

Figure 2 explains the default Apache Spark SPMM im-
plementation presented in Algorithm 1 graphically. The left
matrix is saved in a CSC format, while the right and result
matrices are saved in a dense format with a one-dimensional
vector. By finding a matching entry in the left matrix,
the right and result matrices are accessed sequentially in
column-major order.

The transformation of the right matrix into a dense for-
mat before multiplication can result in performance degra-
dation. First, in general, the transformation of a sparse
matrix to a dense format requires larger memory. Storing
a right matrix of size NRR × NCR matrix in a dense
format statically requires NRR ×NCR × 8 bytes in Apache
Spark assuming the double value representation using Scala
language. Meanwhile, the memory size required to store a
right sparse matrix in a CSC format is largely dependent on
the NNZR. Storing NNZR values in the double type takes
NNZR × 8 bytes in Scala language, while storing the row
indexes list requires NNZR × 4 bytes. Storing the column
pointers requires (NCR + 1) × 4 bytes [21]. Considering
that NRR ×NCR ≫ NNZR generally stands for the most
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Fig. 2: SPMM implementation of Apache Spark. The right
sparse matrix is transformed to a dense format before the
multiplication.

sparse dataset, storing in a dense format might consume
significantly more memory. In addition to the large memory
size requirement, the time to convert to a dense format may
be greater than the actual matrix multiplication time.

Despite the aforementioned shortcomings of the current
Spark SPMM implementation, transforming the right matrix
to a dense format can be beneficial from the perspective
of simplicity in the programming. In addition, when the
density of the right matrix, which can be calculated as

NNZR

NRR×NCR
, increases, accessing contiguous memory region

in a values vector can enhance the total computation time.
To characterize the performance variation of SPMM in the
Apache Spark MLlib, we conducted SPMM experiments
with varying right matrix densities and dimensions.

Figure 3a shows the Cumulative Distribution Function
(CDF) of the ratio of the sparse to dense format transfor-
mation latency to the actual SPMM computation, which
is shown in the horizontal axis. The larger horizontal axis
value implies that format transformation overhead out-
weight the actual multiplication time. Using synthetically
generated 1, 300 cases of various SPMM scenarios whose de-
tail is presented in Section 3.2.1, we conducted SPMM tasks
using Apache Spark MLlib implementation. We measured
the latency to transform a CSC matrix to a dense format and
the latency to complete a multiplication task presented in
Algorithm 1 during the experiments. In the main part of the
figure, we show the CDF of 20% cases of SPMM tasks with
the highest transformation overhead ratio to better represent
the transformation overhead. To find the CDF of the entire
dataset, please refer to the sub-figure in the bottom right
corner. As shown in the figure, 20% of SPMM tasks con-
sumed at least 27% of time for dense format transformation.
In the 10% of cases, the transformation took at least half
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(a) Overhead of converting a sparse matrix to dense
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Fig. 3: Overhead of SPMM execution using a dense format

the latency to complete the multiplication, and about 5%
of cases took more time for transformation than the actual
multiplication. In the worst case, the transformation took
nine times more than the actual computation time.

To present the performance of different SPMM imple-
mentations, we compare the response time of an SPMM
task with the right matrix in a dense format (the default
SPMM implementation provided by Apache Spark) and in
a sparse CSC format (the algorithm that will be presented
in Section 3.1) in Figure 3b. We varied the density of a
right matrix which is shown in the horizontal axis and
used a fixed sparse left matrix. The dotted bar on the left
shows the response time when a right matrix is expressed
in a sparse CSC format, and the bar with the upper-right
diagonal pattern shows the latency when the right matrix is
expressed in dense format. We can see that when the right
matrix density is less than 0.1, the default Apache Spark
SPMM implementation performs worse. The default Spark
implementation is four times slower when the right matrix
density is 0.01 than the implementation that keeps the right
matrix in a sparse CSC format. However, as the density
increases, we can see that converting the right matrix to a
dense format improves performance.

In summary, as presented in Figure 3, the default Apache
Spark SPMM implementation, which transforms a right
sparse matrix to a dense format, imposes significant over-
head during the storage format transformation. Despite the
additional overhead, the transformation can result in better
SPMM execution latency than performing a task in a sparse

Algorithm 2 SPMM (C = L×R) in Sparse Format

Input: Lvals, Lrow idxs, Lcol ptrs, Rvals, Rrow idxs, Rcol ptrs

Output: Cvals, Crow idxs, Ccol ptrs

1: NNZC = CountNNZ(L,R)
2: (Cvals, Crow idxs, Ccol ptrs) = AllocateMem(NNZC)
3: for Rci = 0 to NCR do
4: resultSortedDict = {}
5: for Roff = Rcol ptrs[Rci] to Rcol ptrs[Rci + 1] do
6: Rri = Rrow idxs[Roff ]
7: Rval = Rvals[Roff ]
8: for Loff = Lcol ptrs[Rri] to Lcol ptrs[Rri + 1] do
9: Lri = Lrow idxs[Loff ]

10: Lval = Lvals[Loff ]
11: resultSortedDict[Lri]+ = Rval × Lval

12: end for
13: end for
14: nnz = resultSortedDict.size()
15: Ccol ptrs[Rci + 1] = Ccol ptrs[Rci] + nnz
16: Crow idxs.append(resultSortedDict.keys())
17: Cvals.append(resultSortedDict.values())
18: end for
19: return Cvals, Crow idxs, Ccol ptrs

CSC format in some cases. To provide an optimal SPMM
execution environment, it is critical to identify a better
implementation method for different input dimensions. To
achieve the goal, we propose an algorithm to detect a better
SPMM method and implement it to the default Apache
Spark MLlib to enable dynamic selection of SPMM imple-
mentation based on the input workload characteristics.

3 SYSTEM ARCHITECTURE OF DOS
To improve SPMM task performance while taking advan-
tage of both when a right matrix is expressed in a dense
and sparse format, we first describe a memory-efficient
SPMM implementation while keeping a right matrix in
a sparse CSC format. With the sparse version of SPMM
implementation, it is important to judge which type of right
matrix storage format, either dense or sparse, would result
in better performance. To achieve the goal, we propose
a recommendation model to guide which implementation
would result in better performance considering the SPMM
task characteristics.

3.1 SPMM with Right Matrix in a Sparse Format

Transforming a right matrix to a dense format during
the SPMM execution might result in significant additional
overhead. To avoid such burden, an SPMM task can be
completed while keeping the right matrix in a sparse CSC
format. Algorithm 2 explains the overall process. The al-
gorithm takes left and right matrices in a CSC format as
input with its values, row indexes, and column pointers
as a list. The output of the matrix is also returned as
a CSC format. In Line 1, given left and right matrices,
it counts the NNZ in a result matrix, which becomes
NNZC . The CountNNZ method iterates the left and right
matrices to find NNZ elements. The iteration process is
similar to what is presented between Lines 3 and 13. In
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Line 2, using the computed NNZC value, memory for
variables to store output matrices is allocated. In the SPMM
execution, we tried two memory allocation approaches: the
static allocation by using the pre-computed NNZC and the
dynamic allocation as needed. Each approach has trade-
offs. The NNZ calculation and static allocation require
an additional step to calculate the NNZ of a result ma-
trix. However, after the calculation, no further memory re-
allocation overhead is needed. Otherwise, the heuristic of
dynamic result matrix memory allocation does not require
additional step of NNZC calculation, but it can result in
prohibitive overhead due to the memory reallocation. From
the thorough empirical analysis of both approaches which
is shown in Figure 10, we discovered that pre-computing
NNZC and statically allocating memory results in 7.25%
lower latency on average. The qualitative analysis about the
implementation reveals that the static memory allocation is
much simpler than the dynamic memory re-allocation, and
we decided to adopt the static memory allocation heuristic.
From Line 3, it iterates each column of a right matrix. In
Line 4, a sorted key-value dictionary is created to store
intermediate multiplication results. In the dictionary, the key
indicates the row index of the result matrix, and the value
indicates the intermediate aggregated multiplication result.
Please note that the column index in the result matrix is Rci.
From Lines 5 to 7, it iterates elements in the corresponding
right matrix column. Lines 8 to 11 iterate through the left
matrix in the column-major order, looking for the corre-
sponding left matrix entry for multiplication. The temporary
multiplication result is stored in the resultSortedDict object
and accumulated using a sum operator for the matching
row index of a result matrix. After completing a right matrix
column, the column pointer of a result matrix is updated
(Line 15), and the row indexes and values are updated by
appending results (Lines 16 and 17).

Figure 4 explains the SPMM implementation while keep-
ing a right matrix in a sparse format. The CSC format
is used to express the left, right, and result matrices. It
looks for corresponding entries for multiplication in the left
matrix by referencing the column pointers of a right matrix.
Matching entries for multiplication between left and right
matrices are colored the same. Following multiplication, a
result matrix entry is updated with the row and column
indexes determined by the left matrix row and right matrix
column index, respectively.

3.2 Recommending Optimal SPMM Implementation
In this section, we describe procedures to build SPMM
latency prediction models.

3.2.1 Training Dataset Generation Using DoE
To build a model to predict SPMM latency of arbitrary
size and density of matrices, it is important to generate a
training dataset to represent various SPMM scenarios. There
are many types of graph datasets that can be represented
using a sparse matrix, such as SNAP [11], Graphalytics [22],
and The University of Florida Sparse Matrix Collection [23].
Because of the large number of publicly available graph
datasets and the duplicate data characteristics, performing
SPMM operations for all available cases to generate train-
ing dataset is not ideal. DoS proposes a synthetic training
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Fig. 4: Conducting SPMM while keeping two matrices in a
sparse format

dataset generation algorithm that uses Latin Hypercube
Sampling (LHS) [24], filtering, and D-optimal [25], to build
a general and high-accuracy prediction model with minimal
offline experiments for train-dataset-generation.

SPMM Scenario Generation : The LHS [24] is a sta-
tistical algorithm used to design experimental scenarios by
evenly distributing cases throughout the entire experimental
spaces. Users can choose a probability density function to
spread experiment cases when distributing them. To gen-
erate scenarios that follow a uniform distribution function
for an experiment feature dimension of D and N number
of cases, LHS partitions each feature dimension into N
intervals of equal probability and selects a sample case
independently. Finally, it shuffles a sample of each feature
so that there is no correlation between the cases that were
chosen. The output of the LHS algorithm ranges between 0.0
and 1.0, and users can multiply the maximum value in each
experiment dimension to get final experimental scenarios.

SPMM tasks can be represented with a unique combi-
nation of NRL, NCL, and NCR. Using the LHS algorithm
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with a uniform distribution function, we first generate a
floating-point value in the range of 0.0 and 1.0 and mul-
tiply the maximum value in each dimension to the LHS-
generated value to determine experimental cases. The max-
imum value in each dimension needs to be specified by
considering the capability of an executor node in Spark that
performs an SPMM task. In our prototype implementation
and evaluation, we set the maximum dimension value as
150, 000, which is a reasonably large size to represent a
sparse matrix presented in a block-partitioned way [20]. We
generate 2, 500, 000 distinct cases of NRL, NCL, and NCR

combinations as candidate experiment scenarios.
Other than the dimensions of left and right matrices in

the SPMM, the NNZ and sparsity of input matrices are
also important features to describe SPMM task characteris-
tics. We simulate practical SPMM scenarios to represent a
realistic density scenario of SPMM. Many machine learning
jobs that use SPMM, such as MSSP [4], [5] and PageRank [2],
construct a left matrix from an input graph and keep it fixed
across multiple iterations of multiplications. Meanwhile,
a right matrix is updated continuously through multiple
iterations where a result matrix of iteration i− 1 becomes a
right matrix of iteration i.

To generate practical scenarios of a left matrix, L, and
sparsity, we calculate the density of each node from a real
graph dataset. To calculate per-node density, we count
the NNZ of a node and divide it by the total number of
nodes. Among many density values, we record six density
values, which are the average density of all nodes, most
10, 000 density nodes, most 1, 000 nodes, most 100 nodes,
most 10 nodes, and the most density node. We calculate
the per-node density of the DBLP, Amazon, Youtube, Orkut,
and LiveJournal datasets provided by Stanford SNAP [11],
yielding a total of 30 left matrix density values. To reflect
the workload characteristics of SPMM in machine learning
jobs, we decided to empirically represent the sparsity of
a right matrix, R, by increasing the value with a fixed
interval. We use 16 right matrix density values for training:
0.0005, 0.001, 0.005, 0.01, 0.03, 0.05, 0.07, 0.1, 0.13, 0.15, 0.17,
0.2, 0.23, 0.25, 0.27, and 0.3. To generate various SPMM task
scenarios that are represented with a distinct combination
of NRL, NCL, NCR, NNZL, and NNZR, we randomly
allocate left matrix densities from real graphs and the
synthetically generated right matrix densities to the
2, 500, 000 combinations of NRL, NCL, and NCR.

Filtering Executable SPMM Scenarios : All the gen-
erated 2, 500, 000 SPMM cases cannot be executed on an
executor node owing to the limited available memory size
or various system limitations imposed by Apache Spark,
and such inexecutable SPMM scenarios should be removed
from offline experiments to avoid unnecessary cost. Apache
Spark limits the NNZ of a matrix to the maximum 32-bit
integer value [20]. Thus, an arbitrary matrix scenario is fil-
tered out of a training dataset if its NNZ , the multiplication
of the number of rows, columns, and density, is greater than
2, 147, 483, 647. The right matrix should be converted to a
dense matrix in the current Spark SPMM implementation,
and the multiplication result should also be stored in a dense
format. Apache Spark limits the number of matrix entries to
the maximum of 32-bit integer value [20]. Thus, an SPMM
scenario whose NRR ×NCR or NRL ×NCR is larger than

2, 147, 483, 647 is also excluded from a experiment scenario.
Other than the Spark system limitation, a Spark execu-

tor’s available memory size can decide whether an SPMM
task can be completed. The estimation of real-time memory
consumption of an SPMM task on Spark is challenging
because of the uncertainty in the garbage collection tim-
ing of the underlying Spark engine, Java Virtual Machine
(JVM) [26], and memory consumption from the Spark’s core
engine [27]. To avoid wasting offline experimental costs,
all synthetically generated SPMM cases cannot be executed
on any arbitrary Spark executor, and we must detect un-
executable SPMM cases due to memory constraints. It is a
binary decision whether an SPMM task can meet a memory
size constraint of an executor node, and a rough estimation
of memory consumption is sufficient to select executable
experiment cases given an executor memory size.

Because of the uncertainty of garbage collection timing
of JVM and diverse sparse matrix characteristics, required
memory size calculation based on left and right matrix
dimensions might not be accurate, and we decided to build
a non-linear model for memory consumption estimation us-
ing a tree-based regressor algorithm, XGBoost [28]. The di-
mensions of the left and right matrices, as well as the NNZ ,
are used as features in the required memory size estimation
model. Similar to our approach, OFC [29] used a tree-based
regressor model to estimate memory size consumption of
cloud function runtimes and demonstrated reasonable accu-
racy, demonstrating the usefulness of memory consumption
modeling. Using the predicted memory consumption, we
filter out inexecutable cases in Spark executors that are used
for the training dataset generation experiments.

Optimal SPMM Scenario Generation : From the
2, 500, 000 synthetically generated SPMM scenarios using
an LHS algorithm, we filter 877, 290 executable SPMM cases
on an executor with a configured executor memory size of
32 GB, on which we will perform experiments. Performing
offline experiments with all of the cases is prohibitively
expensive and time-consuming. To build a general predic-
tion model with a small number of training datasets, we
must select representative and distinct SPMM cases from a
pool of potential candidates. The D-optimal [25] algorithm
can select a subset of experiment scenarios from many
candidates while minimizing accuracy loss. The D-optimal
algorithm represents all test case scenarios as a matrix C,
which becomes a candidate for the final experiment scenar-
ios. Each row of the matrix C represents a unique experiment
case, and each column represents a unique feature. In our
experiment scenarios, a column represents the dimension
of the left and right matrix, and the NNZ . The Fisher
information matrix [30] of C is CTC, which is the inverse of
the covariance matrix of C. The D-optimal algorithm selects
a subset of rows from C and names a subset matrix as D.
The goal is to build D with the maximum determinant of
the information matrix, which we denote as |DTD|, with a
minimal number of selected rows from a candidate matrix
C. Maximizing the determinant of an information matrix of
D results in dispersing experiment cases as much as possible
in the experiment region [9].

To build a D-optimal subset matrix, D, out of a candidate
experiment case matrix, C, we apply the Fedorov exchange
algorithm [31]. Given a randomly selected d experiment
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Fig. 5: The procedure of generating training dataset to build a SPMM latency prediction model

cases from C, the algorithm exchanges one of the rows in
the D with a row in C, which does not belong to D, (C −D).
Let us name the prior selection of experiment scenarios as
Dold and name the experiment set after changing a row as
Dnew. The determinant of the newly generated information
matrix is expressed as follows.

|DT
newDnew| = |DT

oldDold| × (1 + ∆(di, dj)) (1)

The di in Equation 1 means a row to be removed in the
Dold, and the dj means a row to be added to the Dnew.
The ∆(di, dj) is defined as V ar(dj) − [V ar(di)V ar(dj) −
Cov(di, dj)

2] − V ar(di). The basic idea of the Fedorov ex-
change algorithm is to calculate the delta of the determinant
of information matrix for every possible pair of di and
dj . In every iteration, a pair with the greatest determinant
increase is exchanged. This process is repeated until no pair
of exchanges increases the determinant. We use Fedorov
exchange in the train-dataset-generation using the R pro-
gramming language’s AlgDesign package [32]. We use the
library to select the best 1, 300 training dataset cases from a
pool of 877, 290 executable cases.

Conducting Experiments for Training Dataset Genera-
tion : Using the D-optimally selected scenarios, we conduct
SPMM tasks in two different ways. One by using the de-
fault Apache Spark MLlib implementation which converts
the right matrix to a dense format and another using the
multiplication algorithm presented in Section 3.1 which
keeps the right matrix in a sparse CSC format during the
multiplication task. We measure latency to complete SPMM
tasks with different implementations and use the latency as
a target value in a prediction model.

Figure 5 explains the overall procedure of generating
train datasets. As explained in this section, it is composed of
SPMM Scenario Generation, Filtering Executable Cases, Optimal
Scenario Selection, and Conducting Experiments for Training
Dataset Generation. In the SPMM Scenario Generation step,
we generate a comprehensive set of SPMM scenarios that
can represent real-world applications. On an Apache Spark
executor node, we use the generated scenarios to perform
Filtering to remove inexecutable cases. The Optimal Scenario
Selection step employs the D-optimal algorithm to cherry-
pick scenarios to achieve maximum diversity with a subset
of cases. The Training Dataset Generation step executes SPMM
tasks with different implementations and records the execu-
tion latency to use as a model output using the D-optimally
selected SPMM scenarios.

3.2.2 SPMM Latency Prediction Modeling
To build a model to predict SPMM execution latency of
arbitrary scenarios, we must define features that become
inputs for a prediction model. The features should represent
characteristics of an SPMM task, and we propose to use
NRL, NCL, NCR, NNZL, NNZR, DL, and DR. DL and
DR represent the sparse matrix density of the left and right
matrices, respectively.

An SPMM latency predictor should model the non-linear
interactions between the input features and the latency. To
model the non-linearity, DoS employs a DNN [33] algo-
rithm, which is commonly used to uncover complex rela-
tionships among input features to infer the target value. A
DNN model architecture is typically composed of multiple
layers, with the previous layer serving as an input to the
next layer. Multiple nodes in an input and output layer are
connected by an edge with a distinct weight value. DNN
is similar to a Multi Layer Perceptron (MLP) [34] except
the loss-minimization method. In a DNN model, weight
values are adjusted through forward and backward prop-
agation [35] in the direction of minimizing user-specified
loss. In between layers, various activation functions [36],
[37] can be inserted to normalize output values. Compared
to a tree-based non-linear regressor [38], [28], a DNN model
can better represent complex interactions among features,
and it might not need specialized feature engineering.

When building a DNN model, various hyper-
parameters, such as the number of hidden layers and nodes,
network weight initialization, activation function, optimiza-
tion algorithm, learning rate, and the number of epochs,
should be decided by an algorithm developer. Properly
setting the model’s hyper-parameters during training is crit-
ical for improving prediction quality. To find optimal DNN
hyper-parameters in DoS, we use a grid-search method [39],
which finds an optimal parameter combination by au-
tomating the execution of trying every possible parameter
combination. The grid-search method has a shortcoming
of exhaustive search space, but it is guaranteed to find an
optimal set of hyper-parameters.

We build an SPMM execution time prediction DNN
model using a fully connected five hidden layers of 1024,
128, 64, 32, and 16. In the model, we perform hyper-
parameter optimization for the activation function, weight
initialization, optimization, and learning rate, which result
in Relu [36], normal [40], adagrad [41], and 0.07, respec-
tively. Model training runs for 1, 000 epochs, and early
stopping [42] is adopted to prevent over-fitting.

DoS builds two independent models using the proposed
DNN architecture: one is used to predict SPMM latency
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when a right matrix is represented in a dense format, which
is the current Apache Spark default implementation, and the
other implementation, described in Section 3.1, which keeps
the right matrix in a sparse CSC format. When an arbitrary
SPMM task is submitted, the proposed system predicts the
SPMM execution time of two different implementations
based on the input matrix expressions and selects the one
with the shortest execution time.

3.2.3 Overhead From the Prediction
Despite the performance gain from the proposed system,
overhead regarding the model training time, memory con-
sumption for inference, and additional inference time might
occur. To train a proposed prediction model, we used a
server with two 3.3GHz CPU cores and 4GB memory (AWS
t2.medium instance). The training process happens off-line,
and it took about 127 seconds on average. Due to the
nature of off-line training, it does not impact the SPMM task
execution time, and users do not get latency disadvantage
due to the model training.

Additional overhead during the inference step might
impact end-user experiences. We measured additional mem-
ory consumed during inference, and it took about 154
MBytes while importing the model serving framework and
loading the prediction model. Considering that Apache
Spark executors generally equip few GBytes of memory, the
additional memory overhead during inference is negligible.
The additional inference time can directly influence the end-
to-end SPMM task latency, and we thoroughly evaluate the
latency impact and present the result in Section 5.3. In short,
the additional latency incurred from the prediction is 63
milliseconds at most, and the average ratio of the additional
prediction latency to the latency improvement while dy-
namically switching between two SPMM implementations
is 8%. Based on the quantitative overhead analysis, we are
confident that the proposed system is worth to be applied
for real-world applications.

4 APPLICATION : SPMM IMPLEMENTATION REC-
OMMENDATION SERVICE

To present the applicability of the proposed system, we
build DoS on top of the Apache Spark MLlib library SPMM
implementation. To minimize Spark source code change, we
adopt the micro-service architecture [43] by implementing
the proposed latency predictor as an independent service.
Figure 6 shows the implemented system. The implemented
system can be accessed via HTTP RESTful API [44]. We
include an HTTP client library in the Apache Spark MLlib
library SPMM method to invoke the service and determine
the best SPMM implementation method.

To provide the prediction service, we use AWS Lambda
to implement the service in a serverless way. AWS Lambda
is a core component to make serverless computing feasi-
ble. Serverless computing relieves application developers of
the burden of managing underlying resources required to
maintain a highly available system, such as fault tolerance,
scalability, and maintainability. A serverless architecture
application is created by combining several fully managed
cloud services in various domains, such as database, mes-
saging, and API handling. Although fully managed cloud
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Fig. 6: The implementation of the proposed system on the
SPMM code of the Apache Spark MLlib library

services reduce application developers’ resource manage-
ment overheads, they limit users’ customized operations.
AWS Lambda is a fully managed function runtime that al-
lows to execute user-implemented source code. The service
is termed as Function-as-a-Service and expands application
scenarios in many fields [10], [45], [46].

In the DoS implementation, we serve the SPMM latency
prediction model using AWS Lambda. Different from a
server environment where a developer can customize sys-
tem settings with a root privilege, AWS Lambda imposes
lots of restrictions in the system configuration [47]. When
serving a DNN prediction model, a large amount of local
storage is required to keep the necessary libraries and model
weights. However, AWS Lambda’s local storage is limited
to 512 MB, which is insufficient to store model weights and
libraries. In our prototype implementation, we use Tensor-
Flow [48] and SciKit-Learn [49], which consume about 2, 035
MB of local storage. There are a few ways to overcome the
storage limitation, and one is by using a publicly accessible
object storage service, such as Amazon S3, or by using a
shared block file storage service using Network File System
(NFS) protocol [50] and Amazon EFS [51], [52], which can
be mounted to a Lambda function runtime. In another way,
AWS supports executing a function runtime on a custom-
built docker container image [53], which we adopt to imple-
ment the proposed system. To build a function runtime, we
define a Dockerfile, which lets necessary libraries be added
to a generated container image.

The image is stored in Amazon Elastic Container Reg-
istry (ECR), which is a fully managed container image stor-
age service that can store, maintain, and distribute container
images. In ECR, we specify a container image as a function
runtime environment when creating a Lambda function. We
use Amazon API Gateway to make the prediction service
externally accessible, which provides an HTTP endpoint
by passing query parameters. During the HTTP request
invocation, NRL, NCL, NCR, DL, and DR, are passed as
query parameters.

The SPMM latency prediction service implementation
receives arguments via API Gateway, and a Lambda func-
tion predicts two latency values of an SPMM task when a
right matrix is processed in a dense and sparse format. The
predicted latencies are returned by API Gateway, and the
SPMM module in the Spark MLlib library chooses a method
with the lowest expected latency and performs SPMM ac-
cordingly. The overall procedure is shown in Figure 6, and
the system is currently available as a web service1.

1. http://dos.ddps.cloud
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5 EVALUATION

We conducted experiments thoroughly from various per-
spectives to evaluate the effectiveness and applicability of
the proposed system, DoS. We execute SPMM tasks using
Apache Spark 3.1.2, which is available via AWS Elastic Map
Reduce (EMR) service. In creating an EMR cluster, we set
one master with a m5.xlarge instance, which has 4 CPU
cores and 16 GB RAM. For worker nodes, we have three
instances of m5.8xlarge type, which has 32 CPU cores and
128 GB of memory. In building latency prediction models,
we use TensorFlow 2.5.0, ScikitLearn 0.23.2, and XGBoost
1.3.3. For hyper-parameter optimization, we use the Grid-
Search method from ScikitLearn for DNN and Bayesian
Optimization package for Random Forest and XGBoost. To
generate diverse SPMM scenarios using the LHS algorithm,
we use pyDOE 0.3.8 and the R package AlgDesign 1.2.0
to select optimal SPMM scenarios. We use Mean Absolute
Percentage Error (MAPE) to assess evaluation accuracy,
which is defined as the average ratio of absolute error to
the true value. We also employ the Root-Mean-Square Error
(RMSE). Lower values for MAPE and RMSE indicate better
performance.

5.1 SPMM Latency Prediction Accuracy
We first evaluate the accuracy of SPMM execution latency
prediction models. In the evaluation, we used an order-3
polynomial regressor [54], Random Forest (RF) [38], XG-
Boost [28], and DNN which we use in the proposed system,
DoS. Figure 7 compares the prediction accuracy of various
algorithms with and without applying hyper-parameter op-
timizations. The order-3 polynomial model is built by using
an equation of Y =

∑N
i=1(αi−3X

3
i +αi−2X

2
i +αi−1Xi)+α0.

Y is the latency to predict, and X is the input features where
the index i means each feature. In the prediction model
training, it learns α to accurately predict Y from X . RF
applies an ensemble of multiple decision-trees where each
individual tree is built with different set of input dataset and
features. It is known to lessen over-fitting which can happen
in a single decision tree. XGBoost is a non-linear regression
model based on trees that generates predictive models in
the form of ensembles of weak predictive models, which are
typically composed of decision trees. It iteratively generates
a classifier based on the accuracy of the classifier generated
in the previous step and ensembles those classifiers to
generate a more accurate final model.

In the figure, the horizontal axis expresses different pre-
diction model algorithms. Figure 7a shows the MAPE, and
Figure 7b presents the RMSE in the vertical axis. The tree-
based prediction models (RF and XGBoost) performs better
than a DNN model without hyper-parameter optimization
where we used the default setting for RF, XGBoost, and
MLP implementation in the experiment packages. However,
as we optimize hyper-parameters to improve accuracy, the
DNN model’s performance improves dramatically, outper-
forming the tree-based prediction models. After optimiz-
ing hyper-parameters, the MAPE of DNN improves from
57.02% to 11.24%. Among tree-based predictor models,
XGBoost shows more improvement than RF with the hyper-
parameter optimization. This phenomenon happens due to
more complex process and a larger hyper-parameter search
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Fig. 7: MAPE and RMSE (lower is better) of latency predic-
tion model when applying hyper-parameter optimization.
The prediction accuracy of DNN becomes superior to other
algorithms after applying the hyper-parameter optimiza-
tion.

space of XGBoost. Our observation coincides with what is
discovered in [55]. The polynomial regressor shows poor
MAPE metric values comparing to the RMSE. Our investiga-
tion reveals that it failed to predict many SPMM cases with
small latency values which can negatively impact MAPE
even with small error values. Overall, the average MAPE
improvement by using the hyper-parameter optimization
of the DNN model is 80%, and the MAPE of the hyper-
parameter-optimized DNN is 45% lower than the XGBoost
algorithm, validating the modeling algorithm selection of
DoS.

Next, we present the effectiveness of applying the D-
optimal algorithm in Figure 8 compares various models’
prediction accuracy, built with different numbers of training
input datasets, which are shown in the horizontal axis.
Among 1, 300 synthetically generated cases, we select a
subset of cases at random and apply D-optimal. The MAPE
value is shown in the vertical axis, the Random selection re-
sults in the dotted bar, and the D-optimal (Proposed) selection
results in the upper-right diagonal line bar. We can see that
using the D-optimal algorithm produces higher accuracy
than does randomly selecting experiment cases. With a
smaller number of train dataset cases, the performance gain
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Fig. 8: The efficiency of the proposed workload genera-
tion algorithm which uses D-Optimal. Comparing to the
randomly generated cases, the proposed algorithm shows
21.2% lower error rate.

is dramatic, demonstrating the effectiveness of the proposed
approach. Overall, applying the D-optimal algorithm results
in 21.2% better accuracy than the random selection with a
same number of training dataset.

5.2 Recommending Optimal SPMM Implementation

To better understand the characteristics of a SPMM im-
plementation which keeps a right matrix in a sparse CSC
format (Right Sparse) and another implementation which
transforms a right matrix to a dense format (Right Dense),
Figure 9 presents the time-breakdown of two SPMM im-
plementations under different right matrix densities. The
dimension of the left matrix for the SPMM workloads in
the experiment is (10000, 30000), and the dimension of the
right matrix is (30000, 10000). We vary the density of the
right matrix given the right matrix size.

Figure 9a presents the time-breakdown of RightDense
implementation in a stacked bar format. The time required
to convert a sparse matrix to a dense matrix is represented
by the bottom part, which has a horizontal line pattern. The
middle section with dot markers represents the multiplica-
tion time, while the top section shows the other time. We
can see that the consumed time distribution is unaffected
by the change in right matrix density shown on the hori-
zontal axis, and the total SPMM latency is nearly constant.
Figure 9b presents the time-breakdown of the RightSparse
implementation. Different from the RightDense implemen-
tation, the RightSparse implementation does not perform a
dense format transformation. Instead, it uses Counting NNZ,
Multiplication, and Sort to perform multiplication while
maintaining a correct matrix in a sparse format. In contrast
to that in the RightDense implementation, we can see that
the consumed time varies as the right matrix density varies
because the overall overhead is proportional to the NNZ
of a right matrix. Because of the latency difference, we can
discover that when the right matrix is sparse, performing
multiplication in the RightSparse implementation completes
faster; when the right matrix density is 0.01, the RightSparse
implementation is 4.3 times faster. The RightDense com-
pletes faster with a denser right matrix; when the right
matrix density is 0.3, RightDense is 1.7 times faster.
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Fig. 9: Time breakdown of different SPMM implementations
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Fig. 10: The SPMM execution latency of two memory al-
location methods of dynamic and static. For the dynamic
allocation heuristic, it shows the number of reallocation due
to insufficient initial memory allocation.

In the RightSparse implementation described in Algo-
rithm 2, we chose to statically allocate an output matrix
memory after computing the NNZ of an output matrix
which can result in extra latency to complete a SPMM task.
To validate the decision, we compare the performance of the
static memory allocation and the dynamic strategy. In the
dynamic memory allocation heuristic, it initially allocates
0.001% of output matrix dimensions (NRL×NCR) to store
non-zero entries for an output matrix. When the current
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memory is deficient to store further entries, it reallocates
the output matrix memory doubling the current size. We
tried other initial allocation sizes and reallocation policies,
but they did not show noticeable performance differences.

Figure 10 compares the latency to complete SPMM
tasks while conducting the MSSP algorithm using Amazon
dataset [56]. During multiple iterations of the MSSP algo-
rithm, the density of right matrix keeps increasing, and
we show the right matrix density in the horizontal axis.
The primary vertical axis shows the latency, and the blue
solid line indicates the latency of static memory allocation
while the red dotted line shows that of dynamic memory
allocation. The secondary vertical axis presents the number
of memory reallocations which happens only in the dynamic
heuristic. When the sparsity of right matrix is low, both the
NNZ calculation overhead of the static heuristic and the
memory reallocation overhead of the dynamic heuristic are
negligible, and they show very similar performance. As the
density of right matrix increases, the memory reallocation
overhead outweigh the NNZ calculation overhead, and the
static memory allocation shows 7.25% better performance
than the dynamic heuristic. Other than the quantitative
superior performance, the implementation of the static allo-
cation is much simpler than the dynamic heuristic which is
beneficial regarding the operational perspective. The quan-
titative and qualitative comparison validate the choice of
NNZ calculation followed by the static memory allocation
for the RightSparse implementation.

Figure 11 compares the accuracy to recommend a
better-performing implementation method of RightDense
and RightSparse. For the evaluation, we use the syntheti-
cally generated 1, 300 SPMM experiment cases that were
presented in Section 3.2.1. The horizontal axis presents
different implementation methods. The OnlySparse heuristic
performs SPMM while always keeping the right matrix
in a sparse CSC format. The OnlyDense heuristic executes
SPMM while transforming the right matrix to a dense
format. The default Apache Spark SPMM implementation
adopts the OnlyDense implementation. The StaticThreshold
heuristic selects the RightSparse or RightDense implementa-
tion by considering the density of an input right matrix,
DR. The StaticThreshold determines the static density value,
and when the density of a right matrix is larger than the

threshold value, it selects the RightDense implementation.
If the density of a right matrix is less than the threshold
value, the RightSparse implementation is chosen. In our
empirical analysis, the threshold value between 0.04 and
0.14 showed the best performance, and we set the threshold
as 0.1. The proposed system (DoS) employs the SPMM
latency prediction model described in this paper. Following
the prediction, it chooses an implementation method with
the lowest expected latency. Please keep in mind that we
separated training and test dataset exclusively with 1, 300
SPMM task scenarios when experimenting with DoS.

The primary vertical axis of Figure 11 shows the accu-
racy to recommend a faster SPMM implementation method
whose value is expressed with bars. The secondary vertical
axis shows the relative latency penalty expressed in the
percentile unit due to the incorrect recommendation whose
value is marked with red star markers. To calculate the
relative latency penalty, for an arbitrary SPMM task, let us
assume that the RightDense implementation takes 100 s and
the RightSparse implementation takes 150 s. In the workload,
the correct recommendation is the RightDense implemen-
tation. If the RightDense implementation is recommended,
the penalty becomes zero. If the RightSparse implementation
is recommended, the penalty is calculated as the absolute
value of latency difference divided by the faster response
time. In the example, the penalty is calculated as 150−100

100 ,
which is 50%, and counted towards penalty due to incor-
rect recommendation. After calculating the penalty ratio of
SPMM tasks, we average the penalty ratio value of the false
recommendations only.

From the figure, we can observe that the recommen-
dation accuracy of DoS is 95%, and it outperforms other
methods whose prediction accuracy is 45%, 55%, and 73%
for RightSparse, RightDense, and StaticThreshold, respectively.
From the latency penalty due to the false recommenda-
tion, we can discover that the default Spark implemen-
tation method, OnlyDense, has a large latency penalty of
269%. In the RightDense implementation, a static amount
of overhead to transform a right matrix to a dense format
always exists, and the overhead might overwhelm the ac-
tual multiplication time. The proposed DoS system has an
average latency penalty of 13%, which is 20 times lower
than the default Spark implementation. The lower penalty
ratio of the DoS recommendation algorithm implies that,
although DoS makes incorrect recommendations for 5% of
the SPMM tasks in the experiments, the latency difference of
false recommendations between RightDense and RightSparse
is relatively small, and it shows minor additional latency.
Comparing the recommendation accuracy of DoS with that
of the StaticThreshold, the proposed DoS recommendation al-
gorithm shows 30% accuracy improvement. With respect to
the latency penalty ratio presented in Figure 11, StaticThresh-
old took 20.69% more time due to the false recommendation,
which is 58.9% larger than that of DoS recommendation.

5.3 Optimal SPMM Recommendation Service

We evaluate the practicality of the proposed recommen-
dation system while experimenting with real-world graph
datasets, which are Amazon, DBLP, Youtube, and Orkut [56].
They are available in the SNAP repository [11]. The Amazon
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Fig. 12: Superb recommendation accuracy and performance
gain by using DoS prediction algorithm over the default
Spark implementation

dataset contains 334, 863 nodes and 925, 872 edges. The
DBLP dataset contains 317, 080 nodes and 1, 049, 866 edges.
The YouTube dataset has 1, 134, 890 nodes and 2, 987, 624
edges. The Orkut dataset contains 3, 072, 441 nodes and
117, 185, 083 edges. They are encoded as a square matrix
in CSC format. The real-world graph dataset is too large to
process as a single block and should be divided into several
blocks. We used the Spark distributed block matrix RDD
representation [20] in the experiments and set the number
of rows and columns of the left matrix block to 150, 000 and
100, 000, respectively. For the right matrix, we set the block
size as (100000, 500), where 500 is the maximally executable
value with given memory size for the experiments. The
experiments are conducted while conducting MSSP [5] in
multiple iterations. To initialize the right matrix for the
MSSP, we randomly select 500 nodes and set the corre-
sponding index of the right matrix as 1 and all other values
as 0. As with the MSSP algorithm, the right matrix becomes
denser with each iteration. The minimum and maximum
densities of the right matrix are 0.00000033 and 0.72875853,
respectively. Many SPMM operations with different left and
right matrix block densities are performed after partitioning
the original input matrices. Each SPMM task on partitioned

blocks is carried out independently using a recommended
implementation method.

Figure 12 presents the SPMM implementation recom-
mendation quality and performance gain in a realistic ap-
plication scenario. Figure 12a shows the recommendation
accuracy of OnlyDense, which is the Spark default SPMM
implementation, and the proposed system, DoS. The sec-
ondary axis depicts the average performance penalty as a
result of incorrect recommendations. The horizontal axis
depicts the real-world graphs and SPMM implementation
methods used in the experiments. We omit the results of
OnlySparse and StaticThreshold because the algorithms show
patterns similar to the results of other experiments.

Across all the practical scenarios, OnlyDense, which is the
Spark default SPMM implementation, shows poor accuracy
of 29% at most for the Orkut dataset. It implies that the
default Spark SPMM implementation can perform very
poorly when the right matrix density is low. Otherwise,
the proposed recommendation algorithm of DoS shows
superb prediction accuracy of 93% on average. Regarding
the latency penalty due to incorrect recommendation, the
OnlyDense implementation shows significant penalty be-
cause it performs poorly especially when the right matrix
density is low. Regarding the DoS recommendation algo-
rithm, for the 7% incorrect recommendations, it took 63.5%
more time than the optimal implementation. Regarding the
StaticThreshold algorithm, which is not shown in the figure,
for 16% of false recommendations, it took 115% more time
than the optimal implementation.

Figure 12b presents performance gain of various SPMM
implementations over using the default Spark SPMM im-
plementation, OnlyDense. Unlike the performance penalty
metric, which only considers false recommendations, the
metric in Figure 12b takes into account all cases of cor-
rect and incorrect recommendations. We can estimate the
overall latency improvement over the default Spark SPMM
implementation using the values presented. The Spark de-
fault implementation shows the worst performance, and we
normalize the latency values to the OnlyDense implemen-
tation. For different workloads, which are presented in the
horizontal axis, the performance of OnlyDense, OnlySparse,
StaticThreshold, and ProposedSystem is shown in the order.
The recommendation algorithm of the proposed DoS shows
the most performance gain over the default Spark, and it is
expected to improve the overall SPMM latency by 2.2 times.

Figure 13 presents the overhead incurred from the
SPMM latency prediction. In our evaluation, the prediction
took around 60 milliseconds on average. To quantitatively
evaluate the additional overhead from inference, we calcu-
late the ratio of the additional prediction time to the latency
gain by choosing an optimal SPMM implementation, which
is InferenceT ime

|RightSparseLatency−RightDenseLatency| . The lower ratio value
means the latency gain is much larger than the additional
prediction time. Meanwhile, the ratio value larger than 1.0
implies that the additional time for prediction is larger than
the performance improvement, and the proposed system
can negatively impact the system. The negative impact can
happen when the latency of RightSparse and RightDense is
similar.

In Figure 13, we express the overhead ratio using a
box-whisker plot. The vertical axis shows the overhead



IEEE TRANSACTIONS ON BIG DATA 13

Amazon DBLP Youtube Orkut
0.0

0.5

1.0

1.5

2.0

In
fe

re
nc

e 
Ov

er
he

ad
 R

at
io

Fig. 13: The additional latency incurred from the SPMM
execution latency prediction of DoS

ratio value, and the horizontal axis shows different dataset
used in the experiments. On average, the first quartile,
the median, and the third quartile is 0.05, 0.08, and 0.17,
respectively. Among all the SPMM executions, 4% of cases
have overhead ratio larger than 0.5, and 2% of cases have
overhead ratio larger than 1.0. Despite of 10s of milliseconds
of additional inference latency from the SPMM latency
prediction, the performance improvement by choosing an
optimal implementation method outweighs the inference
overhead.

We implemented the proposed system applying a server-
less architecture and using AWS Lambda, which has a
primary limitation in the local storage size. To load neces-
sary packages for running prediction models, we build two
Lambda execution environments: one embedding packages
in a container image and the other using NFS. To evalu-
ate the implementation of the proposed service, Figure 14
presents how different storage solutions of Lambda impact
the service latency. In the figure, the horizontal axis ex-
presses the configured Lambda memory sizes from 512 to
2, 048 MB, which is known to impact CPU performance [47].
In each memory configuration, we show two different stor-
age options: NFS service (EFS) and embedding packages in
a container image (Container Image).

Figure 14a presents a consumed time-breakdown when
a prediction model is served in a cold Lambda runtime.
In a cold runtime status, a runtime should be prepared
from the service provider, and the time is shown in the
vertical line bar at the bottom of each configuration. After
the runtime has been prepared, the necessary packages
(right upper diagonal pattern portion) and the prediction
model should be loaded (dotted portion). Following the
completion of all prerequisite steps, the prediction function
is executed, as shown in the left upper diagonal pattern.
We can discover that the package import and model loading
take the majority of the time when serving models in a cold
runtime. The performance difference between EFS and Con-
tainer Image is significant, especially when accessing storage
services. The observation makes sense because packages
and models should be loaded from storage services, and
the NFS requires remote network access, which results in
longer latency than that in a container image that contains
necessary packages and models locally.

Figure 14b shows the latency to serve a prediction re-
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Fig. 14: Time breakdown of deploying prediction model us-
ing a serverless architecture with different storage services

quest when an execution runtime is in a warm status. In
a warm runtime, a code execution environment including
imported packages and loaded models is ready, and only
the model inference step is required. Thus, Figure 14b shows
only the function execution time, and there is no perfor-
mance difference between EFS and Container Image. The
inference time decreases linearly as the configured memory
size increases, and users can set memory size considering
the application’s characteristics.

From the experimental result presented in Figure 14, em-
bedding necessary files in a container image [53] is beneficial
especially when a cold start happens. During a warm start,
the underlying file storage service has no effect on overall
latency, and users can choose an appropriate storage service
based on application service patterns. In addition, using
a provisioned concurrency [57], which prepares function
runtimes in ready status, can be a good way to circumvent
a cold start to provide consistent performance.

6 RELATED WORK

Optimizing Matrix Multiplication Implementation: Yu et
al. [58] proposed a system to minimize communication
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cost when conducting matrix multiplication with multiple
worker nodes by predicting the intermediate data size.
Considering the input matrix shapes, it generates multi-
ple execution plans and chooses the best-performing one.
HAMA [59] proposed an algorithm for efficient matrix
multiplication using the Hadoop MapReduce engine [18],
[17]. Marlin [60] proposes an algorithm to minimize shuf-
fle and compute overhead by partitioning input matrices.
Stark [61] proposes a distributed version of Strassen’s ma-
trix multiplication [62] using Apache Spark with a novel
approach of creating a distributed recursion tree of com-
putation. MPEC [12], [63] proposed a matrix multiplica-
tion performance estimation on various cloud computing
resources. The aforementioned algorithms are primarily
concerned with optimizing dense matrix multiplications,
whereas sparse matrix multiplication tasks differ signifi-
cantly in terms of the optimal execution environment and
task characteristics.

With respect to multiplications of sparse matrix and
vector, Xie et al. [64] proposed a new sparse-matrix-storage-
format called Block COO+ to minimize shuffle overhead in
the Spark. Dhandhania et al. [65] and Luo et al. [66] pro-
posed an algorithm to select the optimal sparse data storage
format for matrix multiplication. The preceding work on
optimizing sparse matrix multiplication is useful for the
proposed DoS algorithm. The DoS performance prediction
model for dense and sparse matrix multiplication can be
extended to other storage formats, which can improve the
performance of sparse matrix multiplication on Spark even
more. S-MPEC [67] proposed an algorithm to build an
optimal SPMM execution environment on various cloud
instances. Different from S-MPEC, DoS can recommend
whether dense or sparse representation can result in better
performance, while the S-MPEC assumes only the Spark
default implementation, which conducts multiplication with
the right matrix in a dense format.

TaskFlow [68] is a task scheduling system which consoli-
dates heterogeneously dependent jobs. With the proposed
static and dynamic tasking methods, conditional tasking,
and concurrent CPU-GPU tasking heuristics, they could
achieve latency and energy-efficient lightweight task graph
computing system. TaskFlow can be applied for various
tasks which can be expressed using a graph data structure
including various machine learning algorithms. Consider-
ing that Apache Spark expresses jobs using a graph, the pro-
posed algorithm from DoS is complementary to TaskFlow
which can be used to detect optimal SPMM implementation
method for machine learning jobs.

Hardware-Specific Matrix Multiplication Optimiza-
tion: Using specialized hardware for SPMM can signifi-
cantly improve performance, and optimizing SPMM using
various hardware accelerators is a well addressed topic
in literature [69], [70]. Lin et. al. [15] proposed a sparse
DNN inference engine, SNIG, which avoids unnecessary
computation from sparse elements. They proposed a de-
composition strategy which enhances scheduling efficien-
cies between CPU and GPU. Xin et. al. [14] proposed
several SPMM implementation optimization heuristics to
enhance Sparse DNN inference, which includes using loop
transformation primitives with a execution cost model on
a GPU device. In addition, the authors proposed various

GPU-specific optimization tactics. Bisson et. al. [16] pre-
sented an sparse DNN inference implementation on GPU
devices to overcome the irregular memory access patterns
of sparse DNN operations. Alperen et. al. [71] evaluated
various sparse matrix computations on multi and many
core CPU architectures. From thorough analysis, the authors
proposed sparse solver optimization heuristics focusing on
fewer cache misses. The aforementioned work and DoS
have a common purpose of optimizing sparse dataset op-
erations. However, the difference in the target hardware
environments hinders applying the previous work to DoS.
The optimization heuristics for specialized hardware and
high-performance computing environments are not directly
applicable to a general-purpose commodity hardware, such
as CPU, which is widely adopted to build a big-data pro-
cessing environment, such as Apache Spark.

Providing Optimal Data Processing Environment: As
computing environment and system configurations become
more complex, it is challenging for algorithm developers to
build an optimally working environment. Ernest [72], Cher-
rypick [73], and PARIS [74] proposed algorithms to help
build an optimal big-data processing environment on cloud
computing resources with Apache Spark. They used down-
sampling to reduce offline experiment overhead to cover di-
verse machine learning algorithms with large-scale datasets.
Using the down-sampled dataset, Ernest adopted a non-
negative linear equation [75], Cherrypick adopts Bayesian
optimization [76] to find the next profiling cloud instance,
and PARIS applied random forest [38]. OptEx [77] proposes
an algorithm to predict Spark job completion time by con-
sidering the input dataset size and cluster configurations.
The work is expected to help build a cost-effective Spark
environment on cloud where users have flexibility in setting
the execution environment. The aforementioned previous
work focused on predicting performance of general machine
learning algorithms on Apache Spark. However, MPEC [12]
showed the performance characteristics of matrix multipli-
cation on Spark is quite different from general machine
learning jobs which do not use matrix multiplication as a
core computation kernel. Considering the performance dif-
ference, SPMM task execution time prediction and provid-
ing optimal implementation should be addressed separately
as presented in this work.

To help build an optimal deep learning training environ-
ment, Paleo [78] and MLPredict [79] proposed algorithms to
infer the training time of DNN implementation by referenc-
ing the internal model architecture. This method is similar
to the one used by DoS to predict the execution time of var-
ious SPMM tasks with different implementations. Though
the algorithm details vary owing to different application
domains, the publication of performance estimation under
various configurations demonstrates the significance of the
problem addressed in the paper.

Building Optimal Experiment Scenarios: SPMM task
scenarios can be very diverse, and DoS adopts LHS, fil-
tering, and a D-optimal algorithm to build SPMM training
dataset generation. DoE [9] is widely adopted in relevant
domains to minimize experiment cost. Ernest [72] adopted
an A-optimal algorithm to select a subset of experiment
scenarios. Bayesian optimization [76] helps select the next
experiment scenario considering exploitation and explo-
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ration. Packing Light [80], like DoS, uses the LHS algo-
rithm to generate random experiment scenarios and re-
sponse surface design to aid in understanding how different
workload characteristics change as the underlying hardware
configurations change. Rodrigues et al. [81] discussed the
interaction between hardware configurations and machine
learning algorithm training on Apache Spark. To minimize
experiment cost, the authors applied a randomized two-
level fractional factorial design to filter out similar experi-
ment scenarios.

7 CONCLUSION

SPMM is a core kernel operation for many machine learning
algorithms. A general-purpose big-data processing frame-
work, Apache Spark, supports SPMM operation in its lin-
ear algebra library. However, the default implementation
of Spark SPMM has a major shortcoming as it always
transforms a right sparse matrix to a dense format before
conducting multiplication. To overcome this limitation, we
proposed DoS, which predicts latency to complete various
SPMM tasks and recommends an optimal SPMM imple-
mentation method. To accomplish this, we described an
SPMM implementation method that maintains the right
matrix in a sparse CSC format. We proposed a synthetic
method of generating practical SPMM scenarios using statis-
tics from real-world graph datasets using the LHS and D-
optimal algorithms to build a latency prediction model.
DoS created a prediction model with a DNN architecture
using the training dataset. Thorough testing reveals that the
DoS SPMM implementation recommendation module has
excellent prediction accuracy and outperforms the default
Spark SPMM implementation by 2.2 times. The proposed
system is demonstrated by the real-world deployment of
DoS using a serverless architecture with the current Apache
Spark.
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[54] E. Ostertagová, “Modelling using polynomial regression,” Procedia
Engineering, vol. 48, pp. 500–506, 2012, modelling of Mechanical
and Mechatronics Systems. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1877705812046085
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