
Distributed Matrix Multiplication Performance Estimator
for Machine Learning Jobs in Cloud Computing

Myungjun Son
Department of Computer Science

Kookmin University
Seoul, South Korea

smj8612@kookmin.ac.kr

Kyungyong Lee
Department of Computer Science

Kookmin University
Seoul, South Korea

leeky@kookmin.ac.kr

Abstract—Matrix multiplication is an important kernel task
in many machine learning algorithms. As the size of input
datasets increases, multiple workloads are analyzed in large-
scale distributed cloud computing environments. Therefore,
understanding the characteristics of a distributed matrix
multiplication task is essential for running machine learning
jobs in the cloud. Herein, we propose Matrix multiplication
Performance Estimator for Cloud computing, a method to
predict the latency of matrix multiplication of various sizes
and shapes in a distributed cloud computing environment.
We first characterize the overhead of a distributed matrix
multiplication task and propose features to model the latency of
a task with different input types. Using the proposed features,
a latency prediction model is developed by applying a data
mining algorithm and a parameter optimization step iteratively.
In experiments with 236 distinct types of matrix multiplications
on diverse cloud instances running Apache Spark, we confirm
that the proposed method can model the latency of various
types of matrix multiplication tasks effectively and capture the
non-linear interactions among the proposed features. A com-
parison with the state-of-the-art cloud computing performance
predictor, Ernest, reveals that the proposed method provides
63% lower Root Mean Square Error (RMSE) for a distributed
matrix multiplication latency prediction task and confirms the
uniqueness of the distributed matrix multiplication workload.

I. INTRODUCTION

Many big data analysis systems are deployed in cloud
computing environments to process increasingly large
datasets while guaranteeing stable operations, scalability,
and fault-tolerance from the viewpoint of infrastructure. To
satisfy application demands from distinct use cases, cloud
computing service providers offer various types of config-
uration instances, and many big data systems are deployed
in a scale-out manner using cloud computing resources. In
such environments, managing distributed compute resources,
datasets, and programming is challenging. To relieve the
burden of managing distributed resources and allow appli-
cation developers to focus on critical tasks, many systems
that provide simple and easy interfaces to handle large-scale
datasets have been proposed, e.g., Apache Spark [19].

Data mining algorithms are used to extract valuable
information from massive datasets, and in many machine

10K squares 20K squares 30K squares
R4 R4 R4C4 C4 C4G2 G2 G2

Instance types (R4/C4/G2)
Matrix multiplication workload size

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

ali
ze

d
lat

en
cy

 an
d

pr
ice

 co
st

latency
latency * price

(a) Different instance types

square
square

short-wide
long-thin

long-thin
short-wide

matrix shapes(left*right)

0

2000

4000

6000

8000

10000

12000

14000

16000

la
te

nc
y

(m
se

c)

(b) Different matrix shapes

Figure 1: Normalized value of latency with different instance
types and input matrix shapes (lower values are better)

learning algorithms, matrix multiplication is the core compu-
tation kernel. For example, in recommendation systems, the
core computation kernel of matrix factorization algorithms,
such as SVD [7] and NMF [9], is matrix-matrix multipli-
cation. Matrix-vector multiplication is the core kernel of
the PageRank algorithm when using the power method to
obtain principle eigenvectors [11]. To build a cost-efficient
cloud environment wherein machine learning tasks can be
performed with a distributed matrix computation kernel, it
is crucial to estimate the overhead of the kernel task with
distinct matrix sizes and shapes.

To understand the characteristics of matrix multiplication
performance in a distributed cloud computing environment,
we analyzed the performance of dense matrix multiplication
with diverse input sizes and formations on distinct cloud
computing instances. In the experiments, we multiplied two
square matrices(10000, 20000, and 30000 rows) on AWS
EC2 R4, C4, and G2 instances with a size of 2xlarge. We
used the Apache Spark MLlib BlockMatrix library [2] to
conduct the experiments with four machines with Open-
BLAS installed.

In Figure 1a, the gray bar indicates the normalized latency
of the fastest completing instance type. As shown in the

figure, when the input matrix size differs, the best perform-
ing instance type differs. If we consider the price of each
instance, the performance difference increases further (red
star). Furthermore, as shown in Figure 1b, the multiplication
of two non-square matrices exhibits significantly different
performance in comparison with that of square matrix multi-
plication even when the number of multiplication operations
is the same, i.e., the number of left matrix rows × left
matrix columns × right matrix columns. From the results
shown in Figure 1, it is evident that estimating the latency of
distributed matrix multiplication tasks with different matrix
sizes and shapes is challenging.

Despite the importance of matrix multiplication in ma-
chine learning, comprehensive performance analyses and
modeling in a distributed cloud computing environment
have not been undertaken. Some methods, e.g., Ernest [15],
CherryPick [1], and PARIS [17] focus on predicting machine
learning task performance in a cloud computing environ-
ment. These methods rely on scale-based sampling to esti-
mate the latency to complete a task with the entire original
input dataset and show sufficient accuracy for some machine
learning tasks. However, they show poor for predicting the
latency of distributed matrix multiplication tasks because
they fail to capture the complexity of the task. Many studies
have investigated performance optimization, modeling, and
prediction on a single machine with multiple cores using
hardware-optimized libraries, e.g., OpenBLAS. However,
these studies did not consider network and I/O overhead,
which can be significant in a distributed cloud computing
environment.

In this paper, we propose Matrix multiplication Perfor-
mance Estimator for Cloud computing, a method to predict
the latency of matrix multiplication of arbitrary shapes and
sizes using various cloud computing resource configurations.
To represent the characteristics of distributed matrix multi-
plication tasks, such as the total number of multiplication
operations, shuffle overhead, and output matrix size, the
proposed method employs eight features for modeling the
task latency of distributed matrix multiplication. A predic-
tion model is built using a gradient boosting (GB) regressor,
followed by Bayesian optimization to find optimal hyper-
parameters. The experimental results from more than 200 di-
verse matrix sizes and shapes demonstrate that the proposed
method can predict performance latency with a prediction
accuracy of the coefficient of determination (R2) more than
0.9. Furthermore, a comparison of the proposed method
to Ernest [15], a state-of-the-art machine learning cloud
computing task performance evaluator, demonstrates that the
proposed method is 63% more accurate (with a metric of
RSME) at predicting the distributed matrix multiplication
task latency.

The primary contributions of this study are as follows:
• Characterizing distributed matrix multiplication
• Proposing unique features to effectively represent dis-

tributed matrix multiplication tasks overheads
• Uncovering the non-linearity among features, and

proposing latency prediction model
• Uncovering GPU cloud instances do not provide effi-

cient distributed matrix multiplication operations

A(0,0) A(0,1) A(0,2)

A(1,0) A(1,1) A(1,2)

B(0,0) B(0,1)

B(1,0) B(1,1)

B(2,0) B(1,2)

C(0,0) C(0,1)

C(1,0) C(1,1)

× =

A(0,0) A(1,0) A(0,1) A(1,1) A(0,2) A(1,2) B(0,0) B(1,0) B(2,0) B(0,1) B(1,1) B(1,2)

MatMult MatMult MatMult MatMult MatMult MatMult MatMult MatMult MatMult MatMult MatMult MatMult

ElemSum

C(0,0)

ElemSum

C(0,1)

ElemSum

C(1,0)

ElemSum

C(1,1)

Worker-1 Worker-4Worker-2 Worker-3

product
(I/O, compute)

block partition
cogroup
(network)

element-wise
addition
(compute)

Figure 2: Block-based distributed matrix multiplication and
related overhead in each step. Network, I/O, and CPU are
the principal resources of the execution.

II. MATRIX MULTIPLICATION IN DISTRIBUTED
COMPUTING ENVIRONMENTS

The optimization of distributed matrix multiplication has
been well studied in the literature. In the HPC community,
many studies have focused on minimizing the communica-
tion cost using the MPI model. The representative methods
include SUMMA [14] and CARMA [4]. These methods
demonstrate optimal performance with respect to minimiz-
ing communication costs; however, they have limitations
in terms of programmability, scalability, and robustness in
comparison with general-purpose big data analysis systems,
e.g., Spark [19], particularly in shared cloud computing
environments.

Apache Spark is an open source big data analysis plat-
form. The primary abstraction in Spark is a Resilient Dis-
tributed Dataset, which represents a read-only collection of
objects partitioned across a set of machines. Spark manages
large-scale data using partitions that help to parallelize
distributed data processing while guaranteeing fault toler-
ance with lineage and task execution optimization via lazy
evaluation [19].

In Spark, matrix-related linear algebraic operations are
supported in the MLlib library [2] with various matrix-
partitioning schemes (row-, column-, and block-based) and
a set of distributed operation APIs on the matrix. To multi-
ply two matrices, Spark MLlib automatically identifies the
optimal way of task distribution based on the input matrix-
partitioning scheme and uses the Scala Breeze library to
perform multiplication. Consider C = A × B, i.e., the

multiplication of two matrices. If A is row-partitioned and
B is column-partitioned, the Cartesian product is performed
for each row block of A and column block of B. If both
A and B are block-partitioned, the block dimension of the
resulting matrix C is determined by considering the number
of worker nodes and input block dimensions. A worker node
that is responsible for each resulting block fetches all the
necessary blocks from A and B to execute a multiplication
operation locally.

Figure 2 shows an example of block-based matrix mul-
tiplication. Here, the left matrix A, right matrix B, and
the result matrix C are 2 × 3, 3 × 2, and 2 × 2 block
matrices, respectively. In Spark, a cogroup operation allows
a worker node, responsible for the result block, to collect the
necessary left and right matrix blocks by block IDs. During
a cogroup operation, network overhead is dominant. After
collecting all necessary blocks, each worker node performs
product operations, followed by element-wise addition op-
erations. In this step, the I/O overhead to read the fetched
blocks from a local.dir location and the compute overhead
are dominant.

A. Modeling the Distributed Matrix Multiplication Over-
head

Dense matrix multiplication is a CPU-intensive task;
however, other resource overheads become non-negligible
when dense matrix multiplication is executed in a large-
scale distributed computing environment, e.g., Spark. To
qualitatively understand the characteristics of a distributed
matrix multiplication task, we summarize the I/O, network,
and compute overheads. Here, LR and LC are the number
of rows and columns of a left matrix, respectively, and RC
is the number of columns of a right matrix. Thus, the size of
the resulting matrix is LR×RC. Note that the left, right, and
the resulting matrices are block-partitioned, and block sizes
are denoted by lr, lc, and rc, where LR ≥ lr, LC ≥ lc,
and RC ≥ rc.

Shuffle: A worker node responsible for computing an
output matrix block of size lr × rc must fetch blocks from
the left and right matrices of size lr × LC and LC × rc,
respectively. If the required blocks are unavailable locally,
the worker node must fetch them from remote machines,
which involves network overhead. Assuming uniform block
distributions among worker nodes, the network overhead in
the shuffle phase can be expressed as follows:

BlockFetchOverheadlr×rc ∝
LC
lc∑

i=1

lr × lc+ lc× rc (1)

Compute: After a shuffle step is complete, the worker
node performs multiplication on the fetched blocks, fol-
lowed by element-wise addition. To perform multiplica-
tion, the blocks must be read from Spark’s local directory
(spark.local.dir configuration), which is generally set as a

lr
lc rc

lc

Model data
generation

lr
lc
rc

lr*lc*rc

lr*rc
lc*rc
lr*lc

Modeling

…

Gradient Boosting Regressor

Bayesian Optimization

Feature
extraction

lr*lc+lc*rc

Figure 3: Proposed architecture

disk storage device. Thus, the I/O read overhead is the
same as the shuffle overhead and can be computed using
Equation 1.

After loading the input matrix blocks into memory, each
worker node executes a multiplication task. Here, the over-
head is expressed as follows. Equation 2.

ComputeOverheadlr×rc ∝
LC
lc∑

i=1

lr × lc× rc (2)

In the element-wise addition, the number of addition
operations for each cell is proportional to LC

lc , and the size
of each output block is lr × rc.

III. MATRIX MULTIPLICATION PERFORMANCE
ESTIMATION

The proposed method attempts to predict the latency
involved in multiplying dense matrices of different sizes and
shapes. As matrix multiplication is a core kernel task in
many machine learning algorithms for big data analytics,
we attempt to predict the matrix multiplication performance
for various cloud computing resources wherein many recent
big data systems are deployed.

The proposed method architecture, which comprises tasks
of training dataset generation, feature extraction, and mod-
eling, is shown in Figure 3. In the modeling step, we
perform Bayesian optimization [12] iteratively to find the
optimal working hyper-parameters of the selected modeling
algorithm.

A. Training Data Generation

In the training dataset generation step, the proposed
method performs offline profiling of various shapes and
sizes of matrix multiplication to construct a model for
predicting the latency of an arbitrary input dataset. Matrix
multiplication tasks can be broadly categorized as square
× square, long-thin × short-wide, and short-wide × long-
thin tasks. To cover all shapes and sizes, the proposed
method profiles the latency of synthetically generated left
and right matrices. In the latency measurement, the proposed

method utilizes the Apache Spark web UI REST API, which
provides various execution metrics in the JSON format.

To obtain optimal performance for various cloud comput-
ing instances with distinct capacity, the proposed method
adopts OpenBLAS for performing computation on a CPU
and NVBLAS to compute instances that employ GPU de-
vices [13]. We use netlib-java [16] for allowing Spark to
interact with hardware-optimized linear algebra libraries.

B. Feature Extraction

As discussed in Section II-A, the matrix multiplication
overhead in a distributed computing environment involves
various resources. To account for such diverse overheads,
the proposed method utilizes the dimensions and products
of input matrix blocks, i.e., lr, lc, rc, lr×rc, lr× lc, lc×rc,
lr× lc+ lc× rc, and lr× lc× rc, as features to model the
matrix multiplication performance. Here, the lr × rc term
represents the size of the output matrix, the lr × lc and
lc× rc terms represent the size of the left and right matrix
blocks, respectively, where the size impacts the network and
I/O disk overheads. The lr× lc×rc term represents the total
number of multiply operations.

Unlike the proposed method, previous methods focus
on predicting the performance of data mining tasks on
cloud computing resources using a scale-based sampling
mechanism as an input feature for prediction [1], [15], [17].
Generally, these methods select a considerably small portion
of the input dataset and measure performance using a subset
of the dataset. Using the outcomes from the sample dataset,
these methods apply distinct predictive algorithms, e.g., a
non-negative linear equation (Ernest [15]), Bayesian opti-
mization (Cherrypick [1]), and random forest (PARIS [17]),
to make a prediction. However, the scale-based sampling
mechanism cannot capture the complex nature of distributed
matrix multiplication and it considers either lr or rc based
on the sampling method. Accordingly, the proposed method
demonstrates superior performance owing to its rich set of
features (Section IV).

C. Modeling

In the modeling step, the proposed method builds a model
to represent the performance of multiplying various matrices.
This step comprises model construction and hyper-parameter
search. The proposed method utilizes GB regressor [6] for
the model construction step and Bayesian optimization [12]
to find optimal parameters for the GB method.

GB [6] is a flexible non-parametric statistical learning
approach for classification and regression. The main idea
behind GB is combining multiple weak learners that are
generally applicable to only simple linear relations incre-
mentally in order to model complex and non-linear inter-
actions among features. A GB model is fitted in a forward
stage-wise pattern, where at each stage, a new weak learner
model is fitted to the residual of the current model, and the

model focuses more on correcting errors from the previous
iterations. Unlike a similar decision tree method, the GB
method is robust against overfitting as it creates an ensemble
of many weak learner models [3].

When building a predictive model, appropriately setting
the model parameters is crucial for improving the prediction
quality. Many heuristic methods, e.g., random walk, grid-
based search, and adoption of statistical inference, have
been proposed for searching the best performing hyper-
parameters. The proposed method utilizes a statistical in-
ference method based on the Bayesian model [12]. The
Bayesian optimization method searches for a set of next con-
figuration values that are likely to improve the model quality
or reduce uncertainty. This is a non-parametric black box
approach that estimates an objective function (i.e., the com-
plete performance measure from all parameter combinations)
using a stochastic process, e.g., a Gaussian process. When
predicting the objective function, Bayesian optimization uses
all information available from previous runs (prior) and the
objective function model is updated (posterior) after new
experiments are conducted (likelihood).

IV. EVALUATION

We evaluate the performance of the proposed method thor-
oughly using various types of cloud computing instances,
input matrix sizes, and shapes. In summary, applying the GB
algorithm with the proposed features outperforms a linear
regressor and exhibits 52% lower RMSE. Furthermore, by
applying Bayesian optimization to the selection of GB
hyper-parameters, we could improve the prediction accuracy
by approximately lowering RMSE by 7%. An evaluation of
the proposed method with various types of cloud instances
demonstrates its effectiveness in a cloud computing environ-
ment. Finally, a comparison of the proposed method with
Ernest [15], a state-of-the-art machine learning performance
predictor for cloud computing, indicates that the proposed
method exhibits approximately 63% lower RSME when
predicting matrix multiplication latency.

A. Setup

To create diverse matrix multiplication scenarios for this
evaluation, we generate left and right matrices with different
numbers of rows and columns (128 - 8,000,000). Within
this range, we generate 236 synthetic test cases of square ×
square, long-thin × short-wide, and short-wide × long-thin
matrices1. Matrix multiplication is performed using Apache
Spark and the MLlib library (version 2.2.0). Multiplication
of each matrix size is executed five times, and the median
value is used to represent the latency of the task. Unless oth-
erwise stated, a Spark cluster is deployed to AWS EC2 using
the spark-ec2 library2 with four R4.2xlarge instances. Each
EC2 instance has a hardware-optimized linear algebra library

1Test input cases - http://bit.ly/2CvOmnK
2https://github.com/kmu-leeky/spark-ec2

installed, i.e., NVBLAS for GPU instances (g2.2xlarge)
and OpenBLAS for other instances. To employ modeling
algorithms, we use scikit-learn 0.18.1 with Python 2.7.12.
To evaluate the accuracy of the prediction models, we use
the coefficient of determination (R2) as a metric. This metric
is calculated as shown in Equation 3, and it measures the
extent to which the predicted outcome (ŷi) resembles the real
measured value (yi). The maximum value of the metric is
1.0, which indicates the model predicts without error (larger
values indicate better prediction).

R2 =

∑
i

(ŷi − y)2∑
i

(yi − y)2
(3)

B. Performance Evaluation

1) Feature importance: The proposed method uses var-
ious combinations of left and right matrix block sizes as
features to model complex distributed matrix multiplication
operations. As shown in Figure 4, to assess the impact of
the proposed features in the GB regressor, we visualize the
relative importance of features calculated by counting the
number of times a feature is selected for splitting, where
each split is weighted by the improved performance [5].
Here, the GB regressor method is performed 100 times and
the average importance value is shown with the minimum
and maximum values in error bars. The total number of
multiplication operation (lr× lc× rc) terms is the dominant
feature (0.37). Features that represent the output matrix size
(lr × rc) and shuffle overhead (lr × lc + lc × rc) are also
dominant factors, with values of 0.24 and 0.17, respectively.
This observation corresponds to Figure 1b, which shows that
latency may differ for matrix multiplication tasks with the
same number of multiplication operations (lr × lc × rc)
but with different shapes and output sizes, e.g., long-thin
× short-wide and short-wide × long-thin tasks. To quantita-
tively analyze the impact of each feature on model accuracy,
we show the coefficient of determination value along the
secondary vertical axis. From the most important feature,
we cumulatively add the next most important feature (in the
x-axis) and construct a model. The best model accuracy is
achieved with three most important features: the number of
multiplication operations, output matrix size, and amount of
shuffle overhead.

2) Effectiveness of Bayesian optimization: The proposed
method uses Bayesian optimization to find optimal hyper-
parameters for constructing a model. To analyze the influ-
ence of the optimization step quantitatively, we list three
hyper-parameters and the R2 value in Table I. In the ex-
periments, we use the Bayesian optimization library from
the bayes opt Python package. During optimization, we
use 10-fold cross-validation to generate the training and
test datasets and search for hyper-parameters to maximize
R2 over 30 iterations. Compared to the default parameters

lr*l
c*r

c
lr*r

c

lr*l
c+

lc*
rc

lc*
rc lr*l

c lc rc lr

features

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

im
po

rta
nc

es

importances
0.75

0.80

0.85

0.90

0.95

co
ef

fic
ie

nt
 o

f d
et

er
m

in
at

io
ncoeff. det.

Figure 4: Relative importance of features and the impact on
model accuracy. The number of multiplication operations,
output matrix size, and the shuffle overhead are the three
most important features.

Default Bayesian
optimization

n estimators 100 114
min samples split 2 14

max features 8 6
performance (R2) 0.9586 0.9689

Table I: Parameters suggested by optimization module and
the improved performance

of the GB regressor, the optimization step changes the
model parameters to improve the accuracy, i.e., an increased
number of regression trees (n estimators), while controlling
overfitting, i.e., avoiding representing a case that is specific
to a particular sample (min samples split). The final row
of Table I summarizes that the accuracy of the model
(as measured by the coefficient of determination) slightly
increases from 0.9586 to 0.9689.

3) Prediction algorithm comparison: To predict the la-
tency of matrix multiplication of various sizes and shapes,
other machine learning algorithms can be applied with the
proposed features. Among such algorithms, we compare a
variant of decision tree regression algorithm and a linear
regression variant method. For the decision tree variant, we
compare GB regressor (Section III-C) and random forest [3].
Unlike GB, the random forest regressor builds multiple
regressor trees by randomly selecting features and samples.
The GB and random forest regressors represent the non-
linear characteristics of the input data while preventing over-
fitting by combining outcomes from many weak learners.
For the linear regression variant, we adopt non-negative
least squares (NNLS) regressor. When predicting latency,
a non-negativity constraint is imposed to avoid latency
being less than zero. The NNLS regressor finds the optimal
linear model that minimizes the prediction error using this
constraint.

Gradient Boosting Random Forest NNLS
algorithms

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

co
ef

fic
ie

nt
 o

f d
et

er
m

in
at

io
n

(a) latency prediction accuracy

0 50000 100000 150000 200000 250000 300000

measured latency (msec)

0

50000

100000

150000

200000

250000

300000

pr
ed

ict
ed

 la
te

nc
y

(m
se

c)

(b) gradient boosting regressor

0 50000 100000 150000 200000 250000 300000

measured latency (msec)

0

50000

100000

150000

200000

250000

300000

pr
ed

ict
ed

 la
te

nc
y

(m
se

c)

(c) linear regressor

Figure 5: Prediction accuracy of various algorithms

Figure 5a shows the prediction accuracy of three algo-
rithms. For each algorithm, we utilize the input dataset and
features discussed in Section III and perform 10-fold cross-
validation to split the training and test datasets. In total, 100
experiments are performed with different training and test
datasets. The average value is plotted in Figure 5a, with
the minimum and maximum values in error bars. As can
be seen, the GB regressor demonstrates the best accuracy
with an R2 value of 0.969, followed by random forest
regressor and NNLS, with R2 values of 0.955 and 0.869,
respectively. Figure 5a also shows that the linear equation
cannot capture the non-linear interactions among the features
proposed herein. Figures 5b (GB regressor) and 5c (NNLS)
show the measured and predicted latency in the x and y axes,
respectively. Here, the dotted line indicates the prediction
with no error (slope of one) and the scattered points close
to the line represent accurate predictions. From the figures,
we confirm that the GB regressor provides better latency
prediction accuracy.

4) Proposed method with various cloud computing in-
stances: To determine the applicability of the proposed
method on various cloud computing instances, we compare
its performance using a compute-optimized EC2 instance
(C4.2xlarge), a GPU instance (G2.2xlarge), and a memory-
optimized instance (R4.2xlarge). Despite having the same
instance size (2xl), different instances have distinct hardware
configurations and hourly price. For example, the compute-
optimized instance employs higher frequency processors

with less RAM and the memory-optimized instance provides
more RAM with a lower CPU frequency. Due to the different
memory capacities of the instances, the maximum size of
matrices for multiplication can differ. For a fair comparison,
we select an intersection of matrix sizes that can be pro-
cessed by all three instances. The input dataset generation
and modeling steps are performed as discussed in Section III.
For the model accuracy evaluation, 10-fold cross-validation
is performed 100 times. The average R2 value is shown in
Figure 6a with error bars. As can be seen, regardless of
instance type, the accuracy metric is greater than 0.9.

To quantitatively understand the prediction accuracy of the
proposed method with different instance types, Figure 6b
shows the latency of three representative workloads with
different shapes, i.e., short-wide × long-thin, square ×
square, and long-thin × short-wide. For each workload,
we calculate the measured latency (gray bar) and predicted
latency (cross-lined white bar) for each instance. Other than
the good prediction accuracy, we can observe that the ab-
solute latency value differs significantly among the different
instances. For example, executing 128 × 5,000,000 × 128
matrix multiplication using the G2 instance involves three
times greater latency compared with the R4 instance. If we
consider the price of these two instances (as of writing), the
R4.2xlarge costs $0.532 and the G2.2xlarge instance costs
$0.65 in the us-west-2 region, the gap becomes even larger.
These results demonstrate the importance of the accurate
latency prediction of matrix multiplication in order to select
appropriate cloud instances for big-data analysis workloads.

5) Comparing the proposed method to Ernest:
Ernest [15] is one of the most recent and accurate meth-
ods to provide cloud computing instance recommendation
for various machine learning tasks. Ernest comprises two
steps: experiment design and performance prediction. In the
experiment design step, Ernest builds test cases using a small
fraction of the sampled dataset and a distinct number of ma-
chines to run the experiments. In the prediction step, Ernest
uses a linear regressor with the non-negativity constraint
and metrics gathered from the experiments. To apply matrix
multiplication tasks to Ernest, we should define the workload
fraction to enable sampling; however, there is no clear way
to scale down a matrix multiplication workload. Due to this
limitation, we apply Ernest in two ways. First, we divide the
number of elements (number of rows × number of columns)
in the left and right matrices by the fraction, which we refer
to as Ernest-Element. The second way is to scale down the
workload by the total number of multiplication operations
(number of left matrix rows × left matrix columns × right
matrix columns), which we refer to as Ernest-Multiply.
We select three representative matrix shapes, i.e., square
× square, long-thin × short-wide, and short-wide × long-
thin, with the largest matrix size available for execution
with four R4.2xlarge machines. While performing the Ernest
experiments, some test cases could not be completed due

R4 G2 C4
instance types(2XL)

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

co
ef

fic
ie

nt
 o

f d
et

er
m

in
an

t

(a) latency prediction accuracy of different instance types

128 * 5M * 128 22K * 22K * 22K 30K * 128 * 30K
R4 R4 R4G2 G2 G2C4 C4 C4

instance types(R4/G2/C4)
matrix multiplication input size

0

20000

40000

60000

80000

100000

120000

la
te

nc
y(

m
s)

measured latency
predicted latency

(b) measured and predicted latency with different matrix shapes and instance
types

Figure 6: Performance of the proposed method with different
cloud computing instances

to memory constraints, indicating Ernest’s inaccuracy when
generating test cases.

The experimental results are shown in Figure 7. For dif-
ferent matrix shapes, we show the true measured value, the
predicted latency of the proposed method, Ernest-Element,
and Ernest-Multiply. Regardless of the workload scale-down
mechanism, Ernest’s prediction model shows poor accuracy
in comparison with the proposed method, except for the 128
× 8,000,000 × 128 workload. On average, the prediction
accuracy (with the metric of RSME) of the proposed method
is better than that of the Ernest-Element and Ernest-Multiply
by 80% and 76%, respectively. In addition to poor prediction
accuracy, Ernest cannot reuse experimental results from
other matrix multiplication tasks, because its experiment
design requires scaling down the original workloads pre-
cisely by the dataset fraction and number of machines. In
contrast, the proposed method can reuse the results of other
matrix multiplication tasks to increase the size of the input
dataset pool, thereby improving the model accuracy using
more diverse matrix multiplication scenarios.

V. RELATED WORK

Big data workload performance estimation on cloud:
In a cloud computing environment, there are many instance

128 * 8M * 128 32K * 32K * 32K 60K * 128 * 60K
True True TruePro Pro ProE-El E-El E-ElE-Mu E-Mu E-Mu

latencies from prediction models
 matrix multiplication input size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

no
rm

al
ize

d
la

te
nc

y

25573 182945 28665324864
170544

247916

25640

252860

93223

31189

331111

197936

True Measured
Proposed Method
Ernest-Element
Ernest-Multiply

Figure 7: Comparison of the proposed method with Ernest

types with unique hardware configurations. Few studies
have proposed methods to build an optimal environment for
dealing with big data analysis workloads. Ernest [15] em-
ploys an algorithm that predicts the performance of arbitrary
data mining algorithms with different numbers of workers
in the cloud. PARIS [17] follows a hybrid online/offline
approach, where a random forest model is used to predict
the application performance under various VM configura-
tions based on features such as CPU utilization obtained
from profiling. CherryPick [1] uses Bayesian optimization
to select instance type candidates for offline profiling in
order to predict performance on various cloud instance
types. These approaches rely on a scale-based sampling
method for a given input dataset, and the profiled result
is not reusable for other input datasets. Furthermore, they
focus on predicting high-level machine learning algorithm
execution latency and cannot capture the complex nature of a
distributed matrix multiplication task. Thus, their prediction
accuracy is reduced when they are applied to an algorithm
whose kernel is distributed matrix multiplication.

Mariani et al. [10] proposes a machine-learning based
modeling method to predict HPC application performance
in the cloud. Their method first profiles the behavior of
an application using hardware-independent metrics and then
runs the application on a few cloud instances to measure the
performance. The correlation between application metrics
and the cloud instance is discovered using the random
forest algorithm. This method relies on the sampling of
the applications or the input dataset, and its model is not
reusable for a new dataset. In the proposed method, we
measure the latency of the matrix multiplication tasks of
arbitrary sizes and the previous experimental results can be
used to improve the prediction accuracy of any input.

Optimizing cloud-based distributed matrix multiplica-
tion: Matrix multiplication is an important task in machine
learning jobs with large-scale datasets. Due to the impor-
tance of the task and the ever-increasing sizes of datasets,
many studies have focused on optimizing the task in a
distributed cloud computing environment. Yu et al. [18] thor-
oughly investigates the communication overhead of various
distributed matrix multiplication shapes and proposes a task
execution plan to minimize the communication cost. Mar-
lin [8] proposes a distributed matrix multiplication algorithm
on Spark to minimize the shuffle overhead. As discussed
quantitatively in this study, shuffle overhead is crucial for
determining the performance of distributed matrix multipli-
cation tasks; however, other than the shuffle overhead, the
output matrix size and total number of products also impose
significant impact on overall task completion time.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a method for predicting the exe-
cution time of distributed matrix multiplication with various
input datasets on a variety of cloud computing instances. We
first characterize the overheads of distributed matrix multi-
plication and propose eight features that represent different
steps of the task. In the modeling step, we employ a GB re-
gressor to model non-linear interactions among the features
and Bayesian optimization to find better performing hyper-
parameters in an efficient manner. We evaluated more than
200 cases of various matrix multiplication scenarios (e.g.,
square × square, long-thin × short-wide, and short-wide
× long-thin) on various cloud computing instances. The
evaluation results reveal that among the proposed features,
the number of product operations, the output matrix size,
and shuffle overhead are the three most important features
that determine the overall latency. A performance compar-
ison with the state-of-the-art cloud computing performance
predictor, Ernest, reveals that the proposed method provides
63% lower RMSE when predicting latency of distributed
matrix multiplication tasks.

We are currently working on selecting a small number
of representative distributed matrix multiplication workloads
that provide high prediction accuracy while reducing the
performance profiling overhead on different cloud com-
puting instances. In addition to the proposed features for
modeling task latency with the proposed method, we plan to
add additional features of unique cloud computing instance
configurations, e.g., clock rate, network bandwidth, and
memory size. We expect that these additional features will
help to predict the task latency of different types of cloud
computing instances.

ACKNOWLEDGEMENT

This work is supported by the National Research Foun-
dation of Korea (NRF) Grant funded by the Korean Gov-
ernment (MSIP) (No. NRF-2015R1A5A7037615 and NRF-

2016R1C1B2015135), the ICT R&D program of IITP
(2017-0-00396).

REFERENCES

[1] O. Alipourfard, H. H. Liu et al., “Cherrypick: Adaptively un-
earthing the best cloud configurations for big data analytics,”
in NSDI 17. USENIX Association, 2017, pp. 469–482.

[2] R. Bosagh Zadeh, X. Meng et al., “Matrix computations and
optimization in apache spark,” ser. KDD ’16. ACM, 2016,
pp. 31–38.

[3] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, Oct 2001.

[4] J. Demmel, D. Eliahu et al., “Communication-optimal parallel
recursive rectangular matrix multiplication,” ser. IPDPS ’13.
IEEE Computer Society, 2013, pp. 261–272.

[5] J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to
boosted regression trees,” Journal of Animal Ecology, vol. 77,
no. 4, pp. 802–813, 2008.

[6] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine.” Ann. Statist., vol. 29, no. 5, pp. 1189–
1232, 10 2001.

[7] G. H. Golub and C. Reinsch, “Singular value decomposition
and least squares solutions,” Numer. Math., 1970.

[8] R. Gu, Y. Tang et al., “Efficient large scale distributed matrix
computation with spark,” in Big Data, Oct 2015, pp. 2327–
2336.

[9] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in In NIPS. MIT Press, 2000, pp.
556–562.

[10] G. Mariani, A. Anghel et al., “Predicting cloud performance
for hpc applications: A user-oriented approach,” ser. CCGrid
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 524–533.

[11] L. Page, S. Brin et al., “The pagerank citation ranking:
Bringing order to the web.” Stanford InfoLab, Technical
Report 1999-66, November 1999.

[12] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” ser. NIPS’12.
USA: Curran Associates Inc., 2012, pp. 2951–2959.

[13] A. Ulanov, “Nvblas:gpu usage with nvblas,”
2016. [Online]. Available: https://github.com/fommil/netlib-
java/wiki/NVBLAS.

[14] R. A. van de Geijn and J. Watts, “Summa: Scalable universal
matrix multiplication algorithm,” Austin, TX, USA, Tech.
Rep., 1995.

[15] S. Venkataraman, Z. Yang et al., “Ernest: Efficient per-
formance prediction for large-scale advanced analytics.” in
NSDI, 2016, pp. 363–378.

[16] L. Xu, S. H. Lim et al., “Fatman vs. littleboy: Scaling up
linear algebraic operations in scale-out data platforms,” in
PDSW-DISCS, Nov 2016, pp. 25–30.

[17] N. J. Yadwadkar, B. Hariharan et al., “Best vm across
multiple public clouds: A data-driven performance modeling
approach,” in Proceedings of the 2017 Symposium on Cloud
Computing, ser. SoCC ’17. New York, NY, USA: ACM,
2017, pp. 452–465.

[18] Y. Yu, M. Tang et al., “In-memory distributed matrix com-
putation processing and optimization,” in ICDE, April 2017,
pp. 1047–1058.

[19] M. Zaharia, M. Chowdhury et al., “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in NSDI 12. San Jose, CA: USENIX, 2012, pp.
15–28.

