
Enabling Decentralized Microblogging Through
P2PVPNs

Pierre St Juste, Heungsik Eom, Kyungyong Lee, Renato J. Figueiredo
Advanced Computing and Information Systems Lab,

University of Florida,
Gainesville, FL, 32611, USA

Email: {ptony82,hseom,klee,renato}@acis.ufl.edu

Abstract—In the past few years, many peer-to-peer microblog-
ging solutions have been proposed and/or implemented utilizing
various technologies such as DHTs, multicast trees, and/or gossip
protocols. These previous works address the issue of privacy and
performance in a variety of ways including the use of session keys
for message encryption or direct connections for low latency com-
munication. We propose a decentralized microblogging service
which takes advantage of available peer-to-peer virtual private
networking (P2PVPN) technologies which provide privacy and
low-latency communication in the common case of P2P messaging
among social peers. Leveraging the private IP connectivity of
P2PVPNs, our design utilizes both IP multicasting and random
walks to ensure that peers are able to publish messages with
varying degree of scope (i.e. friends, friends of friends, and/or
the public). We study the implications of our data dissemination
mechanism for a decentralized microblogging service through
simulation-based analysis based on synthetic social graphs. Over-
all, our experimental results show that peers can effectively follow
each other’s updates with acceptable overhead. Through the use
of our pseudo-random-walk algorithm, we estimate that, in a
900K social graph, with a TTL of 100, a user can retreive
updates from anyone in the social graph 55% of the time, but
by increasing the TTL to 400 that hit rate increases to 95%.

Index Terms—microblogging, peer-to-peer, multicast, message
distribution, social network

I. INTRODUCTION

Twitter’s rise in popularity, followed by its censorship in
parts of the world, have motivated the research community to
tackle the challenges of building a decentralized microblog-
ging service. For example, during the Egyptian uprising, the
country was disconnected from the global Internet while the
internal networking infrastructure was still operational. A
peer-to-peer microblogging service resilient to such events
could still provide the people with the ability to commu-
nicate privately. Hence, in the past few years, many peer-
to-peer microblogging solutions have been proposed and/or
implemented utilizing various technologies such as structured
DHT [1], multicast trees [2], [3], and/or gossip protocols [4].
To address message privacy, some approaches use session
keys, or asymmetric keys, which brings the challenge of
managing cryptographic keys. For efficient data dissemination,
direct connections are used in many cases, or data storage is
done through a DHT; hence, these approaches have to deal
with user connectivity through NATs and firewalls, and/or
the complexity of bootstrapping and maintaining a structured
overlay for a DHT.

We propose a decentralized microblogging service which
takes advantage of available peer-to-peer virtual private net-
working (P2PVPN) technologies, which provide private, low-
latency communication in the common case of messages sent
among social peers. With private connections and multicast
message delivery already available in P2PVPNs, we are able
to focus on other key areas of building a private and decen-
tralized microblogging service, such as message scope and
data availability. Our design utilizes both IP multicasting and
random walks to ensure that peers are able to publish messages
with varying scopes (i.e. friends, friends of friends, and/or the
public). We study the implications of our data dissemination
mechanism for a decentralized microblogging service through
simulation-based analysis based on synthetic social graphs. We
also developed a prototype implementation to demonstrate the
feasibility of our design choices. Overall, our experimental
results show that peers can effectively follow each other’s
updates with acceptable overhead.

The primary goal of our design is to enable fast, private
updates among friends, rather than the Twitter model which
focuses more on posting messages publicly on the Web. By
utilizing current P2PVPN technologies such as Hamachi [5], or
SocialVPN [6], we build upon a layer where users have private
IP connectivity to each other along with IP multicast support
thus enabling trusted social communication on the Internet
(even through NATs and firewalls). P2PVPNs can naturally
map to social graphs and therefore serve as a foundation for
building decentralized social services because by providing
low latency, private communication network links among
friends.

In this paper, we focus on understanding the characteristics
of the social overlay formed by P2PVPNs – for example, the
ability to reach friends with a one-hop multicast IP packet,
and the impact of the high clustering coefficient on replication
and data availability. With this underlying social overlay, we
build a microblogging service that lets the user control the
propagation of a post in the social overlay through the use
of IP multicast packets. We also leverage the properties of
the social graph in our data replication heuristics in order
to efficiently disseminate public posts throughout the social
overlay. By designing with privacy as a starting point, we are
able to build a system that makes it more difficult to censor,
disrupt, and infiltrate which ultimately creates a more robust

978-1-4673-3133-3/13/$31.00 ©2013 IEEE

The 10th Annual IEEE- CCNC Social Networking & Social Media Track

323

microblogging service.
The main contributions of this paper are:

• A novel decentralized microblogging system which uses
IP multicasting and random walks to propagate updates
through private links of a P2PVPN social overlay.

• A simulation-based analysis which estimates bandwidth
costs and compares data dissemination strategies for three
well-known synthetic social graph models.

II. MOTIVATION

Microblogging services provide users with an intuitive and
widely-available method for communicating ideas. Recent
events have also shown them to be useful tools to organize
revolts. As a result, they have also become targets of gov-
ernments seeking to curtail communication among citizens by
blocking access to micro-blogging services. In many extreme
cases, whole nations have been disconnected from the global
Internet in order to deny dissidents access to any service that
may facilitate their revolution [7]. Although it is possible
for government to disconnect a nation from the Internet by
disabling a major links to the outside world, in most cases,
it requires more effort (and causes more disruption to local
infrastructure and economy) to shutdown a country’s entire
internal Internet apparatus. This was the case in Egypt; after
disconnection from the Internet, services running internally
where still accessible [8]. This occurrence motivates the need
for a microblogging service that is decentralized and would
continue to function despite a disconnection from the global
Internet.

Our goal is to create a service which makes it possible for
users to send messages to their followers directly in a peer-to-
peer manner without having to depend on a centralized service.
Hence, disabling such a service would require governments to
shut down their internal Internet infrastructure, which may be
a more costly and difficult endeavor. By leveraging existing
P2PVPN technologies, we develop a service that allows com-
munication among peers through direct, encrypted IP tunnels
without the need of a middleman. With private messaging to
trusted peers as the primary feature of a P2PVPN, we eliminate
many of the shortcomings of a centralized approach by making
it harder to aggregate all messages in a centralized database.

III. RELATED WORKS

FeedTree [2], and Megaphone [3] are peer-to-peer mi-
cronews/RSS services which are built on top of Scribe [9],
where followers join a multicast tree through the use of the
Pastry [10] structured overlay. By sending updates to the root
node of the tree, the messages are propagated through all
members of the tree. The major difference between these
approaches is that FeedTree uses the RSS feed model to dis-
seminate messages while Megaphone uses the microblogging
model of delivering short 160-character messages. In our sys-
tem, we explore the feasibility of designing a microblogging
service without depending on a structured DHT.

FETHR [11] is a more recent approach aimed at a fully
decentralized HTTP-based microblogging service. Peers sub-
scribe to each other by exchanging canonical URLs and use
the HTTP GET and POST methods to pull or push updates
to each other. This approach also recommends using gossip-
based dissemination for users with a high number of followers.
In Cuckoo [1], peers use a DHT to discover each other’s
endpoints and send follow requests directly to each other.
Publishers are then able to send updates directly to a subset
of followers, depending on bandwidth availability, while the
remaining followers use a gossip protocol to propagate updates
among themselves. To handle churn, the Cuckoo approach
relies on a centralized backend which stores all updates and
follow requests from all users in case a publisher is not
online. Unlike Cuckoo, our approach does not use a DHT
nor centralized backend.

A decentralized microblogging service can also be consid-
ered as a decentralized online social network (OSN), spe-
cialized for efficient delivery of short text messages. Peer-
SoN [12] is a fully decentralized OSN. Similar to Cuckoo,
peers use a DHT as a lookup service to locate each other’s
endpoints, then exchange encrypted information directly with
each other. Safebook [13] is another DHT-dependent OSN
which focuses on anonymity by adding an additional layer
of indirection to message requests by routing them through
multiple layers of friends and friends of friends. Neither of
these approaches mention a replication mechanism to ensure
content availability when users are offline. Vis-a-vis [14] is
yet another decentralized OSN proposal which relies on DHT-
based multicast for message propagation. In this system, users
run a virtual individual server (Vis) which stores and serves
all of the content on behalf of the user. To ensure content
availability, the user can run a Vis on a cloud provider such
as Amazon EC2. LifeSocial [15] is a totally DHT-dependent
OSN; everything a user publishes is stored in the DHT which
ensures data availability even in the case of churn.

IV. DESIGN

Our microblogging service is built on two basic IP layer
mechanisms: 1) IP multicasting to propagate messages to two-
hop neighbors in the social graph, and 2) UDP datagrams
for random-walking through the social graph to disseminate
updates to socially distant peers. In order to enable this
service, the assumption is that users run a P2PVPN service that
provides peer-to-peer, encrypted IP tunnels to friends, even
those behind NATs and firewalls; and the P2PVPN service
supports IP multicast.

A. P2PVPNs and IP Multicasting

Although it is common knowledge that the Internet does
not support IP multicasting and UDP traffic is firewalled in
many cases, there still exist methods that currently allow peers
to have direct, unrestricted IP connectivity to one another,
including IP multicasting support. Virtual private networking
is the typical solution to providing unblocked IP connections to
nodes that are geographically dispersed. A peer-to-peer virtual

324

A

B

C

E

D

G

H

I

J

K

L

M

N

O

TF

P

U

S

R

Q

(a) Multicast Push

A

B

C

E

D

G

H

I

J

K

L

M

N

O

TF

P

U

S

R

Q

(b) Multicast Pull

Fig. 1. Multicast Push. Publisher (filled in black): A, Followers (partial filled
in blue): B, C, D, F, K, L, S. Publisher node A pushes posts to nodes B, C,
D, E, F, G, H, J (since they are two-hops away). Some nodes see duplicate
posts (e.g. node E from both nodes A and B). Multicast Pull. Nodes K and
L are three and four hops away and they are able to receive updates from
publisher node A through nodes G, H, and J. When node L does a two-hop
multicast request, it reaches node G which sends the posts back to node L.

private network (P2PVPN), such as [5], [6], is a practical
decentralized alternative to centralized VPNs. In a P2PVPN,
peers leverage P2P technologies to tunnel IP traffic directly to
each other instead of having to rely on a centralized VPN
gateway. P2PVPNs provide a means for trusted and social
peers to communicate with each other at the IP layer in
order to collaborate (e.g. multiplayer gaming, screen sharing,
media sharing, among others). Since connections are created
with diligence and mainly with trusted, social peers, the
resulting peer-to-peer network is a social overlay. P2PVPNs
also provide IP multicast support by tunneling the multicast
packets to each friend that they currently have an encrypted
P2P connection with.

B. Multicast Push to Followers

Message Format. Every post generated in the system con-
tains the following information: a creator UID, a destination,
a TTL, a timestamp, a post ID, a permission flag, a message,
and a signature. The creator UID helps the system keep track
of the source of the posts. The destination field is set to all,
meaning that the message is broadcasted to all friends through
IP multicast. The TTL field lets the system control the scope
of the message; if a user would like to post messages to only
friends, then the TTL is set to 1. If a user would like to reach
friends, as well as friends of friends, then the TTL is set to
2. The timestamp helps keep track of the creation time of the
message. The post id is a number which increments by one for
each post a user generates. The permission flag helps control
the privacy of the message; peers are only allowed to share
updates from pull requests if the message is set to P (or public).

The message is the actual content of the post; currently this is
limited to a maximum of 140 characters. The signature field
is created by hashing the creator UID, the timestamp, the post
ID, and the message and signed with the creator’s private key.
Therefore the signature ensures the integrity of the message
and verifies its creator, assuming recipients have access to the
creator’s public key.

A multicast push is the most basic message type in our
system. Since a P2PVPN gives IP tunnels among friends, and
multicast support which makes it very easy to contact all
friends privately, implementing this feature simply involves
sending a UDP packet to an IP multicast address. However, it
is important to note that despite its simplicity, it is a vital first
step in allowing peers to send updates privately. This multicast
push, which we view as the common case, is efficient because
messages are sent directly to friends, and they are private by
default because they go through encrypted IP tunnels. For
example, suppose user Alice wants to advertise an event to
her friends. She uses our service to quickly broadcast that
message to her one-hop friends who are currently online. In
this example, Alice would limit the scope of her message to
only friends, which means that the TTL will be set to 1. Unlike
many previous works, we believe that pushing messages to
close friends complements polling for new messages because it
improves the interactivity of the system by delivering messages
with low latency.

C. Multicast Pull by Followers

Message Format. Users do not only rely on the publishers
to push messages to them; they can also proactively pull for
new updates and retrieve them either from the publisher or
from others nodes in the P2PVPN. A pull request contains
the following information: a requester UID, a destination, a
TTL, a request ID, a timestamp, the list of followers, and
a signature. The requester UID helps the system identify
who should receive responses for a particular request. The
destination field is set to all to indicate the use of multicasting.
The TTL can be set to 1 or 2 depending if the follower would
like to pull updates from friends and/or friends of friends as
well. Each request has a unique ID, which allows the system to
keep track of where a request originated so that replies can be
sent along the right path. The timestamp helps determine the
freshness of a request; requests beyond a certain time window
can be ignored. The list of followers includes the publishers
that the requester is following, along with the last post ID
for each follower. That information is used by each node that
receives the request to determine if a requester is missing the
latest posts from a particular publisher. The signature in this
case is the signed hash of the requester UID, request ID, the
timestamp, and the list of followers. The signature makes it
possible to verify the legitimacy of the request and helps guard
against spoofed requests.

Multicast pulls are used by followers because sometimes
they do not receive pushed posts due to packet drops in the
P2PVPN, or due to the follower being offline. Currently in our
prototype, the pull requests are generated every five minutes,

325

A

B

C

E

D

G

H

I

J

K

L

M

N

O

TF

P

U

S

R

Q

(a) Random Push

A

B

C

E

D

G

H

I

J

K

L

M

N

O

TF

P

U

S

R

Q

(b) Random Pull

Fig. 2. Random Push to Distant Followers. Publisher (filled in black): A,
Followers (partial filled in blue): B, C, D, F, K, L, S. Node A pushes posts
through a random path to extend the reach of the posts beyond four-hops. As
a result, node A’s post is stored at nodes E, J, N, M, P, and R. Random Pull
by Distant Followers. Node S does a random-walk and gets node A’s posts
through node N which has cached it due to node A’s random walk push.

but this period is configurable by the user. The multicast pull
also serves another important task: it makes it possible for
followers who are four hops away to receive public updates
from a publisher. As shown in Figure 1(b), if node A pushes a
public post to friends and friends of friends, node L is able to
retrieve those updates through node G, even though nodes A
and L are separated by four social hops. Therefore, when node
A pushes a public post to all friends and friends of friends,
the two-hop requests make it possible for followers who are
four hops away to receive updates through common subset of
friends of friends.

D. Random-walk Push to Distant Followers

Message Format. The message format for the random-walk
push is very similar to the multicast push, but with two main
differences. First, the destination field is set to any instead
of all. When set to any, the system selects a random peer to
forward the message. This is the most basic form of a blind
random-walk. Second, the TTL value is set to a large value
(e.g. 100, 200, or 400) depending on the user’s preference.
The TTL serves as the replication factor because the message
is stored at each node it reaches. Selecting a higher TTL
increases the chances that distant followers will be able to
receive the updates of the publisher. Our analysis discusses
the impact of choosing different TTL values.

The need for a random-walk push is necessary to ensure that
any peer in the network could follow each other. Although this
form of interaction is not expected to be the common case, it
is important to provide a controllable mechanism in which a
publisher could expand the reach of their posts. By replicating
posts throughout the social overlay, a publisher can control the

availability of his/her updates. However, randomly replicating
the messages does not ensure that it is stored at follower
nodes; followers also need to request updates from peers in
the network to increase their chances of obtaining messages.
For example in Figure 2(a), the random push method replicates
posts at nodes E, J, N, M, P, and R. The nodes are not follower
nodes, but replicate posts such that they will make it easier
for followers to retrieve updates from node A. Finally, it is
possible that a node is visited twice in our random-walk; we
discuss this further in our analysis section.

E. Random-walk Pull by Followers

Message Format. The message format for the random-pull
is quite similar to the multicast pull requests. However, the
destination field is changed to any in order to cause a random-
walk in the social overlay. Also, the TTL is set to a large TTL
(e.g. 100, 200, or 400) to increase the search path for updates.

The random pull requests are handled in a similar manner as
the multicast pull request; if a peer notices that the requester
does not contain the latest updates, it replies with these
updates. As shown in Figure 2(b), node S is able to pull
node A’s updates through node N that holds a replica of node
A’s updates from the random walk. Node N replies to node
S and forwards the random pull request to the next node in
the system. The replies take the reverse path of the random-
walk. The reverse path is known because each node builds
a routing table that maps request IDs to IP addresses. That
information makes it possible to send a reply along its reverse
path in the system as long as the reply has the same ID as
the request. Also, a random pull request continues through
the network until the TTL reaches zero. This ensures that
the requester can control the number of nodes to sample for
new messages from his/her followers. Overall, the combination
of our random push and pull mechanism makes it possible
for any peer in the system to follow another peer as long
as both the publisher and the follower use the appropriate
TTL values in their request, while the common case of private
communication among social peers is handled with P2PVPN
multicast push and pull.

V. ANALYSIS

In this section, we discuss the bandwidth costs of our mul-
ticast messages, and study the impact of different TTL values
on the propagation of updates through the social overlay.
Our analysis is based on the assumption that P2PVPNs form
social overlays; therefore, by analyzing our design on top of
various social graphs, we are able to gain some insight on the
performance of our system.

A. Implementation

We also created a prototype implementation to demonstrate
the feasibility of our design. Coding simplicity is one of
the strengths of our approach. By leveraging P2PVPNs and
reusing Berkeley sockets API, HTTP and SQLite for user
interface and data storage, we designed the whole system with
less than 1500 lines of code. Our implementation is written in

326

TABLE I
SOCIAL GRAPH STATISTICS

Method Nodes Edges CC ND BW (KB)
Random 97,134 291402 0.000 6 7
Random 905,668 9,056,680 0.000 20 21
Barabasi-Albert 97,134 291,393 0.001 6 22
Barabasi-Albert 905,668 10,867,872 0.001 24 84
Nearest Neighbor 97,134 279,694 0.17 6 13
Nearest Neighbor 905,668 12,302,767 0.15 27 86

ND - average node degree, CC - average clustering coefficient, BW - average
number of packets per node for 2-hop multicast

Python and uses its corresponding built-in modules to enable
the following capabilities: network communication, object
serialization, data encryption, data storage, and web interface.
To communicate, the service first joins an IP multicast group
and then listens on the appropriate UDP port for incoming
posts and pull requests. To send a multicast post or a pull
request, the payload is encapsulated in a UDP datagram that is
sent to the multicast IP address through the virtual networking
interface (NIC) of the P2PVPN. The P2PVPN then sends
the multicast IP packet to all connected friends, so that the
listening nodes can receive the multicast UDP message. The
P2PVPN handles multicast group management as well as key
management, and encryption.

B. Social Models for Synthetic Graph Generation

There is active research on generating representative graphs
that maintain the fidelity of social networking graphs [16].
For this paper, we utilized two recently studied synthetic
social graph techniques presented in [16]: Barabasi-Albert and
nearest neighbor. To have a basis for comparison, we also
used a regular random graph. Using the parameters provided
in [16], we generated a 90K-node graph, and a 900K-node
graph for each graph generation technique (see Table I for
graph statistics). These graphs are generated and analyzed
with the NetworkX graphing library [17], which is a Python
package for examining complex networks.

C. Bandwidth Cost

Multicasting is our primary method for pushing and pulling
messages to friends and friends of friends; therefore it is im-
portant to have an understanding of the amount of bandwidth
these types of messages consume. In the Table I, we show
the average bandwidth cost of a two-hop push or pull for
the different types of social graphs (assuming a message size
of 1 KB). For the 90K-node graphs, the average bandwidth
per node is between 20KB to 30KB, and for the 900K-
node graphs, the average bandwidth is between 80KB to
90KB. Therefore, the use of the 2-hop multicast mechanism
is practical in the case of a 1 million node network since it is
not too costly in terms of bandwidth.

D. Random-walk Replication

We conducted various simulations on the six social graphs
in order to determine the impact of different TTL values.

(a) Random-walk

(b) Pseudo-Random Walk

Fig. 3. Miss rates 10K push/pull messages. Graphs types: A - Random
90K, B - Barabasi-Albert 90K, C - Nearest-neighbor 90K, D - Random 900K,
E - Barabasi-Albert 900K, F - Nearest-neighbor 900K. In graph (a), the blind
random-walk is only practical with a TTL of 400 where the probability of
pulling updates from a follower is between 50% to 95%. In graph (b), the
pseudo-random-walk performs better with a success rate of 70% to 100% at
a TTL of 200. Followers that are more than 4-hops away in the social graph
can follow updates from any user in the network with high likelihood.

In our simulations, we implemented two types of replication
strategies. The first is a blind random-walk where posts are
replicated at nodes along the random path. The query for these
nodes also follows a random path as well. Since our random-
walk does not remember past visited nodes, it is likely that
some nodes are visited twice. With the 90K-node graphs, the
effective replication is about 75% of the TTL because about
25% of the nodes are revisited in the random-walk. For the
900K-node graphs, the effective number of replicas is 95% of
the TTL.

E. The Impact of the TTL on Random Push/Pull

The graphs in Figure 3 show the miss rate of a random push
and pull mechanism. The miss rate indicates the probability
that a random node in the social overlay would miss updates
from a particular peer using the random push/pull model.

327

As shown in Figure 3(a), a blind random walk has a poor
performance in all of the graphs, with miss rates higher than
80% for a TTL of 100. When the TTL is set to 400, the
miss rate is at a maximum of 22% for the social graphs
with 90K nodes; however, the miss rate jumps to 60% for
the social graphs with 900K nodes. An important observation
is the fact that the social graphs have lower miss rates than the
random graphs in all cases, especially in the 400-TTL case.
This indicates that the high clustering and power-law node
degree distribution in social graphs make it easier to lookup
data [18].

We also tested another replication heuristic which we call
a pseudo-random walk. Instead of replicating the updates at
random nodes, the message takes two random hops without
replication, then finds the node with the closest identifier to
the ID of the message as the target node for replication. For
example, assuming the random path in Figure 2(a), the post
starts a node A, goes through nodes E and J randomly without
storage; at node J the message is forwarded and replicated at
node N only if node N has the node ID closest to the message
ID (in comparison to nodes E, and K). From node N, the post
travels to nodes M and P randomly without replication again,
and goes through the same process of selecting the closest
node again. In summary, the heuristic is to take 2 random
hops, store the post at the node with closest ID, and repeat.

This pseudo-random-walk lowers the miss rate significantly.
As seen in Figure 3(b), for a TTL of 100, the miss rate is below
55%, in contrast to the 80% of the random-walk. By increasing
the TTL to 200, the miss rate decreases to 10% and below,
and at a TTL of 400, the miss rate goes down to 1% or less.
Once again, the random graph has a much worse performance
with miss rates of 30% for the 90K random graph and 60%
for the 900K random graph for a TTL of 200. In this case, a
TTL of 100 has a poor performance with miss rates as high
as 75% for the social graphs; however, with a TTL of 400,
the miss rate decrease to less 5% for all of the social graphs.
By placing data at nodes with the closest ID to the ID of the
message, we are able to gain a much better hit rate indicating
that it is feasible for a user to push public messages in the
social overlay with a TTL of 400.

VI. CONCLUSION

We have demonstrated the possibility to leverage the private
IP links and the social overlay formed by P2PVPNs to create
a decentralized microblogging service. The design starts with
private message at the core of the protocol which differentiates
it from other approaches. The approach also minimizes coding
complexity by allowing the use of Berkeley sockets API for
communication instead of a customized P2P library interface.
With IP multicasting and random-walks, the system is able to
push private updates to social peers with low latency, publish
updates beyond friends (and friends of friends) through the use
of a pseudo-random replication throughout the social overlay,
and allow followers to retrieve posts with multicast and
random-walk pulls. Our analysis shows that we can achieve

fairly good coverage with a TTL of 200 in a 900K-node social
overlay.

REFERENCES

[1] T. Xu, Y. Chen, J. Zhao, and X. Fu, “Cuckoo: towards decentralized,
socio-aware online microblogging services and data measurements,” in
Proceedings of the 2nd ACM International Workshop on Hot Topics in
Planet-scale Measurement, ser. HotPlanet ’10. New York, NY, USA:
ACM, 2010, pp. 4:1–4:6.

[2] D. Sandler, A. Mislove, A. Post, and P. Druschel, “Feedtree: sharing
web micronews with peer-to-peer event notification,” in Proceedings of
the 4th international conference on Peer-to-Peer Systems, ser. IPTPS’05.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 141–151.

[3] T. Perfitt and B. Englert, “Megaphone: Fault tolerant, scalable, and
trustworthy p2p microblogging,” in Internet and Web Applications and
Services (ICIW), 2010 Fifth International Conference on, may 2010, pp.
469 –477.

[4] G. Mega, A. Montresor, and G. Picco, “Efficient dissemination in
decentralized social networks,” in Peer-to-Peer Computing (P2P), 2011
IEEE International Conference on, 31 2011-sept. 2 2011, pp. 338 –347.

[5] “Hamachi - instant, zero configuration vpn,”
http://secure.logmein.com/products/hamachi/vpn.asp.

[6] “Socialvpn - a free and open-source p2p vpn that connects you to your
friends,” http://socialvpn.org.

[7] I. van Beijnum, “How egypt did (and your government
could) shut down the internet,” January 2011. [Online].
Available: http://arstechnica.com/tech-policy/news/2011/01/how-egypt-
or-how-your-government-could-shut-down-the-internet.ars

[8] J. Glanz, “Egypt leaders found off switch
for internet,” February 2011. [Online]. Available:
http://www.nytimes.com/2011/02/16/technology/16internet.html

[9] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe: a
large-scale and decentralized application-level multicast infrastructure,”
Selected Areas in Communications, IEEE Journal on, vol. 20, no. 8, pp.
1489 – 1499, oct 2002.

[10] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, ser. Middleware ’01. London, UK, UK:
Springer-Verlag, 2001, pp. 329–350.

[11] D. R. Sandler and D. S. Wallach, “Birds of a fethr: open, decentralized
micropublishing,” in Proceedings of the 8th international conference on
Peer-to-peer systems, ser. IPTPS’09. Berkeley, CA, USA: USENIX
Association, 2009, pp. 1–1.

[12] S. Buchegger and A. Datta, “A case for p2p infrastructure for social
networks - opportunities & challenges,” in Proceedings of the Sixth
international conference on Wireless On-Demand Network Systems and
Services, ser. WONS’09. Piscataway, NJ, USA: IEEE Press, 2009, pp.
149–156.

[13] L. Cutillo, R. Molva, and T. Strufe, “Privacy preserving social network-
ing through decentralization,” in Wireless On-Demand Network Systems
and Services, 2009. WONS 2009. Sixth International Conference on, feb.
2009, pp. 145 –152.

[14] A. Shakimov, H. Lim, R. Caceres, L. Cox, K. Li, D. Liu, and A. Var-
shavsky, “Vis-a-vis: Privacy-preserving online social networking via
virtual individual servers,” in Communication Systems and Networks
(COMSNETS), 2011 Third International Conference on, jan. 2011, pp.
1 –10.

[15] K. Graffi, C. Gross, P. Mukherjee, A. Kovacevic, and R. Steinmetz,
“Lifesocial.kom: A p2p-based platform for secure online social net-
works,” in Peer-to-Peer Computing (P2P), 2010 IEEE Tenth Interna-
tional Conference on, aug. 2010, pp. 1 –2.

[16] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and B. Y. Zhao,
“Measurement-calibrated graph models for social network experiments,”
in Proceedings of the 19th international conference on World wide web,
ser. WWW ’10. New York, NY, USA: ACM, 2010, pp. 861–870.

[17] “Networkx - high productivity software for complex networks,”
http://networkx.lanl.gov/index.html.

[18] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman,
“Search in power-law networks,” CoRR, vol. cs.NI/0103016, 2001.

328

